DOI QR코드

DOI QR Code

Fabrication of low-loss symmetrical rib waveguides based on x-cut lithium niobate on insulator for integrated quantum photonics

  • Hong-Seok Kim (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Guhwan Kim (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Tetiana Slusar (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Jinwoo Kim (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Jiho Park (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Jaegyu Park (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Hyeon Hwang (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Woojin Noh (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Hansuek Lee (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Min-Kyo Seo (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Kiwon Moon (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Jung Jin Ju (Quantum Technology Research Division, Electronics and Telecommunications Research Institute)
  • 투고 : 2024.03.23
  • 심사 : 2024.08.13
  • 발행 : 2024.10.10

초록

Lithium niobate on insulator (LNOI) is a promising material platform for applications in integrated quantum photonics. A low optical loss is crucial for preserving fragile quantum states. Therefore, in this study, we have fabricated LNOI rib waveguides with a low optical propagation loss of 0.16 dB/cm by optimizing the etching conditions for various parameters. The symmetry and smoothness of the waveguides on x-cut LNOI are improved by employing a shallow etching process. The proposed method is expected to facilitate the development of on-chip quantum photonic devices based on LNOI.

키워드

과제정보

This study was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (Grant 2022-0-00463, Development of a quantum repeater in optical fiber networks for quantum internet), (Grant 2021-0-00552, Development of PPLN waveguide devices for single-photon wavelength conversions), and by the Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government (Grant 24ZS1220, Proprietary basic research on computing technology for the disruptive innovation of computational performance). We are grateful to Dr. Min-Su Kim and Dr. Jae-Pil So for their valuable discussions and comments.

참고문헌

  1. D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, Y. H. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, and M. Loncar, Integrated photonics on thin-film lithium niobate, Adv. Opt. Photon. 13 (2021), no. 2, 242-352.
  2. S. Saravi, T. Pertsch, and F. Setzpfandt, Lithium niobate on insulator: an emerging platform for integrated quantum photonics, Adv Opt Mater 9 (2021), no. 22, 2100789.
  3. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Loncar, Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides, Optica 5 (2018), no. 11, 1438-1441.
  4. M. Younesi, R. Geiss, S. Rajaee, F. Setzpfandt, Y.-H. Chen, and T. Pertsch, Periodic poling with a micrometer-range period in thin-film lithium niobate on insulator, JOSA B 38 (2021), no. 3, 685-691.
  5. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, M. Paolo Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, Ppln waveguide for quantum communication, Eur Phys. J. DAtomic. Molecular Opt. Plasma Phys. 18 (2002), 155-160.
  6. Y. Qi and Y. Li, Integrated lithium niobate photonics, Nanophoton. 9 (2020), no. 6, 1287-1320.
  7. J. Kim, J. Park, H.-S. Kim, G. Kim, T. V. Slusar, J. Kim, J. Park, K. Moon, and J. J. Ju, In The role of state preparation in time-bin entangled photon pair generation for quantum communication, quantum computing, communication, and simulation IV, P. R. Hemmer, A. L. Migdall (eds.) Vol. 12911, SPIE, 2024, 401-405.
  8. X. Wang, X. Jiao, B. Wang, Y. Liu, X.-P. Xie, M.-Y. Zheng, Q. Zhang, and J.-W. Pan, Quantum frequency conversion and single-photon detection with lithium niobate nanophotonic chips, npj Quantum Inform. 9 (2023), no. 1, 38.
  9. M. Zhang, C. Wang, P. Kharel, D. Zhu, and M. Loncar, Integrated lithium niobate electro-optic modulators: when performance meets scalability, Optica 8 (2021), no. 5, 652-667.
  10. J. Zhao, M. Rusing, M. Roeper, L. M. Eng, and S. Mookherjea, Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity, J. Appl. Phys. 127 (2020), no. 19, 193104.
  11. G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application, Opt. Mater. 53 (2016), 1-5.
  12. F. Kaufmann, G. Finco, A. Maeder, and R. Grange, Redeposition-free inductively-coupled plasma etching of lithium niobate for integrated photonics, Nanophoton. 12 (2023), no. 8, 1601-1611.
  13. J. Zhao, C. Ma, M. Rusing, and S. Mookherjea, High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides, Phys. Rev. Lett. 124 (2020), no. 16, 163603.
  14. Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, and S. Zhu, Optimizing the efficiency of a periodically poled lnoi waveguide using in situ monitoring of the ferroelectric domains, Appl. Phys. Lett. 116 (2020), no. 10, 101104.
  15. R. Zhuang, J. He, Y. Qi, and L. Yang, High-q thin-film lithium niobate microrings fabricated with wet etching, Adv. Mater. 35 (2023), no. 3, 2208113.
  16. G. Kim, T. V. Slusar, H.-S. Kim, J. Kim, J. Park, J. T. Kim, J. Park, K. Moon, M.-H. Lee, and J. J. Ju, In Generating entangled photon pairs in thin film lithium niobate for quantum communication, integrated optics: devices, materials, and technologies XXVIII, S. M. Garcia-Blanco, P. Cheben (eds.) Vol. PC12889, SPIE, 2024.
  17. F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, Nanostructuring lithium niobate substrates by focused ion beam milling, Opt. Mater. 27 (2005), no. 8, 1421-1425.
  18. G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling, J. Vac. Sci. Technol. B 29 (2011), no. 2.
  19. H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, Plasma etching of proton-exchanged lithium niobate, J. Vacuum Sci. Technol. A 24 (2006), no. 4, 1012-1015.
  20. W. J. Park, W. S. Yang, W. K. Kim, H. Y. Lee, J.-W. Lim, M. Isshiki, and D. H. Yoon, Ridge structure etching of linbo3 crystal for optical waveguide applications, Opt. Mater. 28 (2006), no. 3, 216-220.
  21. A. Pan, H. Changran, C. Zeng, and J. Xia, Fundamental mode hybridization in a thin film lithium niobate ridge waveguide, Opt. Express 27 (2019), no. 24, 35659-35669.
  22. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, Monolithic ultra-high-q lithium niobate microring resonator, Optica 4 (2017), no. 12, 1536-1537.
  23. Q. Luo, R. Chen Yang, Z. H. Zhang, D. Zheng, H. Liu, Y. Xuanyi, F. Gao, F. Bo, Y. Kong, et al., On-chip erbium-doped lithium niobate microring lasers, Opt. Lett. 46 (2021), no. 13, 3275-3278.
  24. Z. Wang, C. Wang, and H. Yu, Advances in nonlinear photonic devices based on lithium niobate waveguides, J. Phys. D Appl. Phys. 56 (2023), no. 8, 083001.
  25. H. Hwang, H. Heo, K. Ko, M. R. Nurrahman, K. Moon, J. J. Ju, S.-W. Han, H. Jung, H. Lee, and M.-K. Seo, Electro-optic control of the external coupling strength of a high-quality-factor lithium niobate micro-resonator, Opt. Lett. 47 (2022), no. 23, 6149-6152.
  26. H. Hwang, M. R. Nurrahman, H. Heo, K. Ko, K. Moon, J. J. Ju, S.-W. Han, H. Jung, H. Lee, and M.-K. Seo, Hyperband electrooptic modulator based on a two-pulley coupled lithium niobate racetrack resonator, Opt. Lett. 49 (2024), no. 3, 658-661.
  27. J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, Sideband spectroscopy and dispersion measurement in microcavities, Opt. Express 20 (2012), no. 24, 26337-26344.
  28. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, and K. De Vos, Shankar Kumar Selvaraja, tom Claes, Pieter Dumon, Peter Bienstman, dries Van Thourhout, and Roel Baets, silicon microring resonators, Laser Photon. Rev. 6 (2012), no. 1, 47-73.
  29. S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening, Opt. Express 26 (2018), no. 4, 4421-4430.
  30. I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, Ultra-low loss photonic circuits in lithium niobate on insulator, Opt. Express 26 (2018), no. 2, 897-904.
  31. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide, Optica 5 (2018), no. 8, 1006-1011.
  32. J. Shi, Z. Ye, M. Lv, D. Ge, L. Zhang, S. Zhu, and G. Cui, Reduced material loss caused by electron beam lithography in thin-film lithium niobate through post-process annealing, Opt. Mater. 149 (2024), 115049.
  33. A. Shams-Ansari, G. Huang, L. He, Z. Li, J. Holzgrafe, M. Jankowski, M. Churaev, P. Kharel, R. Cheng, D. Zhu, N. Sinclair, B. Desiatov, M. Zhang, T. J. Kippenberg, and M. Loncar, Reduced material loss in thin-film lithium niobate waveguides, APL Photon. 7 (2022), no. 8, 081301.
  34. Y. Jiao, Z. Shao, S. Li, X. Wang, F. Bo, J. Xu, and G. Zhang, Improvement on thermal stability of nano-domains in lithium niobate thin films, Crystals 10 (2020), no. 2, 74.