Acknowledgement
MSIT (Ministry of Science and ICT (Information and Communications Technology)), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2024-RS-2024-00436887) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).
References
- J. Yu, S. Qiu, and T. Yang, Optimization of hierarchical routing and resource allocation for power communication networks with QKD, J. Lightw. Technol. 42 (2024), no. 2, 504-512.
- V. Fernandez, J. Gmez-Garca, A. Ocampos-Guilln, and A. Carrasco-Casado, Correction of wavefront tilt caused by atmospheric turbulence using quadrant detectors for enabling fast free-space quantum communications in daylight, IEEE Access 6 (2018), 3336-3345.
- X. Jiang, M. Itzler, K. O'Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, InP-based single-photon detectors and Geiger-mode APD arrays for quantum communications applications, IEEE J. Sel. Topics Quantum Electron. 21 (2015), no. 3, 5-16.
- J. Choi and J. Kim, A tutorial on quantum approximate optimization algorithm (QAOA): Fundamentals and applications, (Proceedings of the IEEE International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea), 2019, pp. 138-142.
- J. Choi, S. Oh, and J. Kim, The useful quantum computing techniques for artificial intelligence engineers, (Proceedings of the IEEE International Conference on Information Networking, Barcelona, Spain), 2020, pp. 1-3.
- J. Kim, Y. Kwak, S. Jung, and J.-H. Kim, Quantum scheduling for millimeter-wave observation satellite constellation, (Proceedings of the IEEE VTS Asia Pacific Wireless Communications Symposium, Osaka, Japan), 2021, pp. 1-5.
- J. P. Kim, W. J. Yun, H. Baek, and J. Kim, Modern trends in quantum AI: Distributed and high-definition computation, (Proceedings of the IEEE Icoin, Bangkok, Thailand), 2023, pp. 750-754.
- B. Narottama, Z. Mohamed, and S. Assa, Quantum machine learning for Next-G wireless communications: Fundamentals and the path ahead, IEEE Open J. Commun. Soc. 4 (2023), 2204-2224.
- R. D. M. Simes, P. Huber, N. Meier, N. Smailov, R. M. Fchslin, and K. Stockinger, Experimental evaluation of quantum machine learning algorithms, IEEE Access 11 (2023), 6197-6208.
- Y. Kwak, W. J. Yun, S. Jung, and J. Kim, Quantum neural networks: concepts, applications, and challenges, (Proceedings of the IEEE International Conference on Ubiquitous and Future Networks, Jeju, Republic of Korea), 2021, pp. 413-416.
- J. Park, S. Samarakoon, A. Elgabli, J. Kim, M. Bennis, S.-L. Kim, and M. Debbah, Communication-efficient and distributed learning over wireless networks: Principles and applications, Proc. IEEE 109 (2021), no. 5, 796-819.
- R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. A. I. Pieter Abbeel, and I. Mordatch, Multi-agent actor-critic for mixed cooperative-competitive environments, (Proc. Advances in Neural Information Processing Systems, Long Beach, CA, USA), 2017, pp. 6382-6393.
- C. Park, W. J. Yun, J. P. Kim, T. K. Rodrigues, S. Park, S. Jung, and J. Kim, Quantum multi-agent actor-critic networks for cooperative mobile access in multi-UAV systems, IEEE Internet Things J. 10 (2023), no. 22, 20033-20048.
- W. J. Yun, J. P. Kim, S. Jung, J.-H. Kim, and J. Kim, Quantum multiagent actor critic neural networks for Internet-connected multirobot coordination in smart factory management, IEEE Internet Things J. 10 (2023), no. 11, 9942-9952.
- M. Choi, A. No, M. Ji, and J. Kim, Markov decision policies for dynamic video delivery in wireless caching networks, IEEE Trans. Wirel. Commun. 18 (2019), no. 12, 5705-5718.
- S. Park, C. Park, S. Jung, J. H. Kim, and J. Kim, Workload-aware scheduling using Markov decision process for infrastructure-assisted learning-based multi-UAV surveillance networks, IEEE Access 11 (2023), 16533-16548.
- C. Boutilier, Planning, learning and coordination in multiagent decision processes, (Proceedings of the Conference on Theoretical Aspects of Rationality and Knowledge, De Zeeuwse Stromen, The Netherlands), 1996, pp. 195-210.
- M. Choi, J. Kim, and J. Moon, Wireless video caching and dynamic streaming under differentiated quality requirements, IEEE J. Sel. Areas Commun. 36 (2018), no. 6, 1245-1257.
- N.-N. Dao, D.-N. Vu, W. Na, J. Kim, and S. Cho, SGCO: Stabilized green crosshaul orchestration for dense IoT offloading services, IEEE J. Sel. Areas Commun. 36 (2018), no. 11, 2538-2548.
- S. Jung, J. Kim, M. Levorato, C. Cordeiro, and J.-H. Kim, Infrastructure-assisted on-driving experience sharing for millimeterwave connected vehicles, IEEE Trans. Veh. Technol. 2021 (2021), 1.
- G. S. Kim, H. Lee, S. Park, and J. Kim, Joint frame rate adaptation and object recognition model selection for stabilized unmanned aerial vehicle surveillance, ETRI J. 45 (2023), no. 5, 811-821.
- J. Kim, G. Caire, and A. F. Molisch, Quality-aware streaming and scheduling for device-to-device video delivery, IEEE/ACM Trans. Netw. 24 (2016), no. 4, 2319-2331.
- J. Koo, J. Yi, J. Kim, M. A. Hoque, and S. Choi, Seamless dynamic adaptive streaming in LTE/Wi-Fi integrated network under smartphone resource constraints, IEEE Trans. Mobile Comput. 18 (2019), no. 7, 1647-1660.
- J. Yi, S. Kim, J. Kim, and S. Choi, Supremo: Cloud-assisted lowlatency super-resolution in mobile devices, IEEE Trans. Mobile Comput. 2021 (2021), 1.
- J. Koo, J. Yi, J. Kim, M. A. Hoque, and S. Choi, REQUEST: Seamless dynamic adaptive streaming over HTTP for multi-homed smartphone under resource constraints, (Proceedings of the ACM International Conference on Multimedia, Mountain View, CA, USA), 2017, pp. 934-942.
- M. J. Neely, Stochastic network optimization with application to communication and queueing systems, Synthesis Lectures Commun. Netw. 3 (2010), no. 1, 1-211.
- M. J. Neely, Energy optimal control for time-varying wireless networks, IEEE Trans. Inf. Theory 52 (2006), no. 7, 2915-2934.
- M. J. Neely, A. S. Tehrani, and A. G. Dimakis, Efficient algorithms for renewable energy allocation to delay tolerant consumers, (Proceedings of the IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA), 2010, pp. 549-554.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, Playing Atari with deep reinforcement learning, 2013. arXiv preprint. https://doi.org/10.48550/arXiv.1312.5602
- CJCH Watkins and P. Dayan, Q-learning, Mach. Learn. 8 (1992), no. 3-4, 279-292.
- T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications, IEEE Trans. Cybern. 50 (2020), no. 9, 3826-3839.
- S. Jung, W. J. Yun, J. Kim, and J.-H. Kim, Infrastructure-assisted cooperative multi-UAV deep reinforcement energy trading learning for big-data processing, (Proceedings of the IEEE International Conference on Information Networking, Jeju, Republic of Korea), 2021, pp. 159-162.
- S. Jung, W. J. Yun, M. Shin, J. Kim, and J.-H. Kim, Orchestrated scheduling and multi-agent deep reinforcement learning for cloud-assisted multi-UAV charging systems, IEEE Trans. Veh. Technol. 70 (2021), no. 6, 5362-5377.
- M. Shin, D.-H. Choi, and J. Kim, Cooperative management for PV/ESS-enabled electric vehicle charging stations: A multiagent deep reinforcement learning approach, IEEE Trans. Ind. Inf. 16 (2020), no. 5, 3493-3503.
- Y. Kwak, W. J. Yun, S. Jung, J.-K. Kim, and J. Kim, Introduction to quantum reinforcement learning: Theory and PennyLane-based implementation, (Proceedings of the IEEE International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea), 2021, pp. 416-420.
- X. You and X. Wu, Exponentially many local minima in quantum neural networks, (Proceedings of the International Conference on Machine Learning, Virtual Event), 2021.
- S. Park, J. P. Kim, C. Park, S. Jung, and J. Kim, Quantum multi-agent reinforcement learning for autonomous mobility cooperation, IEEE Commun. Mag. 2023 (2023), 1-7. (Early Access).
- W. Yun, Y. Kwak, J. Kim, H. Cho, S. Jung, J. Park, and J. Kim, Quantum multi-agent reinforcement learning via variational quantum circuit design, (Proceedings of the IEEE International Conference on Distributed Computing Systems, Bologna, Italy), 2022, pp. 1332-1335.
- H. Baek, S. Park, and J. Kim, Logarithmic dimension reduction for quantum neural networks, (Proc. Acm Conf. Inf. Knowl. Management, Birmingham, United Kingdom), 2023.
- G. S. Kim, J. Chung, and S. Park, Realizing stabilized landing for computation-limited reusable rockets: A quantum reinforcement learning approach, IEEE Trans. Veh. Technol. 2024 (2024), 1-6.
- A. G. Barto, R. S. Sutton, and C. W. Anderson, Looking back on the actor-critic architecture, IEEE Trans. Syst., Man, Cybern. Syst. 51 (2021), no. 1, 40-50.
- S. K. Jeswal and S. Chakraverty, Recent developments and applications in quantum neural network: A review, Archives Computat. Methods Eng. 26 (2019), 793-807.
- N. Meyer, D. D. Scherer, A. Plinge, C. Mutschler, and M. J. Hartmann, Quantum natural policy gradients: Towards sample-efficient reinforcement learning, (Proc. IEEE International Conference on Quantum Computing and Engineering, Bellevue, WA, USA), 2023, pp. 36-41.
- A. Sequeira, L. P. Santos, and L. S. Barbosa, On quantum natural policy gradients, IEEE Trans. Quantum Eng. 2024 (2024), 1-13. (Early Access).
- B. Narottama and S. Y. Shin, UAV coverage path planning with quantum-based recurrent deep deterministic policy gradient, IEEE Trans. Veh. Technol. 73 (2024), no. 5, 7424-7429.
- C. Huang, Y. He, F. Yu, and P. Zeng, Resource allocation for cognitive radio inspired non-orthogonal multiple access networks: A quantum soft actor-critic method, (Proc. IEEE Global Communications Conference, Kuala Lumpur, Malaysia), 2023, pp. 3161-3166.
- F. Chiti, R. Fantacci, R. Picchi, and L. Pierucci, Mobile control plane design for quantum satellite backbones, IEEE Netw. 36 (2022), no. 1, 91-97.
- R. Picchi, F. Chiti, R. Fantacci, and L. Pierucci, Towards quantum satellite internet working: A software-defined networking perspective, IEEE Access 8 (2020), 210370-210381.
- Y. Wang, Y. Zhao, W. Chen, K. Dong, X. Yu, and J. Zhang, Routing and key resource allocation in SDN-based quantum satellite networks, (Proc. IEEE International Wireless Communications and Mobile Computing, Limassol, Cyprus), 2020, pp. 2016-2021.
- J. Kim, Y. Kwak, S. Jung, and J.-H. Kim, Quantum scheduling for millimeter-wave observation satellite constellation, (Proc. IEEE VTS Asia Pacific Wireless Communications Symposium, Osaka, Japan), 2021, pp. 1-5.
- A. Makarov, C. Prez-Herradn, G. Franceschetto, M. M. Taddei, E. Osaba, P. del Barrio Cabello, E. Villar-Rodriguez, and I. Oregi, Quantum optimization methods for satellite mission planning, IEEE Access 12 (2024), 71808-71820.
- S. Rainjonneau, I. Tokarev, S. Iudin, S. Rayaprolu, K. Pinto, D. Lemtiuzhnikova, M. Koblan, E. Barashov, M. Kordzanganeh, M. Pflitsch, and A. Melnikov, Quantum algorithms applied to satellite mission planning for earth observation, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing 16 (2023), 7062-7075.
- T. Stollenwerk, V. Michaud, E. Lobe, M. Picard, A. Basermann, and T. Botter, Agile earth observation satellite scheduling with a quantum annealer, IEEE Trans. Aerospace Electr. Syst. 57 (2021), no. 5, 3520-3528.
- S. Park, S. Jung, and J. Kim, Dynamic quantum federated learning for satellite-ground integrated systems using slimmable quantum neural networks, IEEE Access 12 (2024), 58239-58247.
- L. Bacsardi, On the way to quantum-based satellite communication, IEEE Commun. Mag. 51 (2013), no. 8, 50-55.
- D. Huang, Y. Zhao, T. Yang, S. Rahman, X. Yu, X. He, and J. Zhang, Quantum key distribution over double-layer quantum satellite networks, IEEE Access 8 (2020), 16087-16098.
- S. Otgonbaatar and D. Kranzlmuller, Exploiting the quantum advantage for satellite image processing: Review and assessment, IEEE Trans. Quantum Eng. 5 (2024), 1-9.
- M. K. Abdel-Aziz, C. Perfecto, S. Samarakoon, M. Bennis, and W. Saad, Vehicular cooperative perception through action branching and federated reinforcement learning, IEEE Trans. Commun. 70 (2022), no. 2, 891-903.
- A. Khalatbarisoltani, L. Boulon, and X. Hu, Integrating model predictive control with federated reinforcement learning for decentralized energy management of fuel cell vehicles, IEEE Trans. Intell. Transp. Syst. 24 (2023), no. 12, 13639-13653.
- S. Lee and D.-H. Choi, Federated reinforcement learning for energy management of multiple smart homes with distributed energy resources, IEEE Trans. Ind. Inform. 18 (2022), no. 1, 488-497.
- M. Moniruzzaman, A. Yassine, and R. Benlamri, Blockchain and federated reinforcement learning for vehicle-to-everything energy trading in smart grids, IEEE Trans. Artif. Intell. 5 (2024), no. 2, 839-853.
- X. Wang, J. Hu, H. Lin, S. Garg, G. Kaddoum, M. J. Piran, and M. S. Hossain, QoS and privacy-aware routing for 5G-enabled industrial Internet of things: a federated reinforcement learning approach, IEEE Trans. Ind. Inform. 18 (2022), no. 6, 4189-4197.
- S. A. Khowaja, I. H. Lee, K. Dev, M. A. Jarwar, and N. M. F. Qureshi, Get your foes fooled: proximal gradient split learning for defense against model inversion attacks on IoMT data, IEEE Trans. Netw. Sci. Eng. 10 (2023), no. 5, 2607-2616.
- J. Liu, X. Lyu, Q. Cui, and X. Tao, Similarity-based label inference attack against training and inference of split learning, IEEE Trans. Inform. Forensics Secur. 19 (2024), 2881-2895.
- N. D. Pham, A. Abuadbba, Y. Gao, K. T. Phan, and N. Chilamkurti, Binarizing split learning for data privacy enhancement and computation reduction, IEEE Trans. Inform. Forensics Secur. 18 (2023), 3088-3100.
- Z. Wang, G. Yang, H. Dai, and C. Rong, Privacy-preserving split learning for large-scaled vision pre-training, IEEE Trans. Inform. Forensics Secur. 18 (2023), 1539-1553.
- W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, and W. Shi, Split learning over wireless networks: Parallel design and resource management, IEEE J. Sel. Areas Commun. 41 (2023), no. 4, 1051-1066.
- Y. J. Ha, M. Yoo, G. Lee, S. Jung, S. W. Choi, J. Kim, and S. Yoo, Spatio-temporal split learning for privacy-preserving medical platforms: case studies with COVID-19 CT, X-ray, and Cholesterol data, IEEE Access 9 (2021), 121046-121059.
- S. Bharadwaj, S. Carr, N. Neogi, and U. Topcu, Decentralized control synthesis for air traffic management in urban air mobility, IEEE Trans. Contr. Netw. Syst. 8 (2021), no. 2, 598-608.
- A. P. Cohen, S. A. Shaheen, and E. M. Farrar, Urban air mobility: History, ecosystem, market potential, and challenges, IEEE Trans. Intell. Transp. Syst. 22 (2021), no. 9, 6074-6087.
- C. Reiche, A. P. Cohen, and C. Fernando, An initial assessment of the potential weather barriers of urban air mobility, IEEE Trans. Intell. Transp. Syst. 22 (2021), no. 9, 6018-6027.
- R. Hoffmann, H. Nishimura, and R. Latini, Urban air mobility situation awareness from enterprise architecture perspectives, IEEE Open J. Syst. Eng. 1 (2023), 12-25.
- S. H. Kim, Receding horizon scheduling of on-demand urban air mobility with heterogeneous fleet, IEEE Trans. Aerospace Electr. Syst. 56 (2020), no. 4, 2751-2761.
- C. Liberto, G. Valenti, S. Orchi, M. Lelli, M. Nigro, and M. Ferrara, The impact of electric mobility scenarios in large urban areas: the Rome case study, IEEE Trans. Intell. Transp. Syst. 19 (2018), no. 11, 3540-3549.
- C. Cato and S. Lim, A miniaturized circularly polarized, parasitic array antenna for ground station communication with cube satellites, (Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA), 2012, pp. 1-2.
- V. M. Salles, S. E. Barbin, and L. C. Kretly, A design of adiabatic digital circuits for micro, nano and cube satellites: four stage JK-FF binary counter using four-phase AC-clocked power-supply, SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (Aguas De Lindoia, Brazil), 2017, pp. 1-4.
- H. An, C. Kim, and Y. B. Park, Substrate integrated waveguide antenna with metasurface for cube satellites, (International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea), 2019, pp. 224-226.
- T. I. Leong, Y. M. O. Abbas, M. A. C. Purio, and H. A. Elmegharbel, Image classification unit: A u-net convolutional neural network for on-orbit cloud detection aboard cubesats, (IEEE International Geoscience and Remote Sensing Symposium Igarss, Brussels, Belgium), 2021, pp. 2807-2810.
- A. Shrivastav, S. Singh, A. Mahajan, and S. Bhattacharya, Effective control & software techniques for high efficiency GaN FET based flexible electrical power system for cube-satellites, (IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, USA), 2016, pp. 601-608.
- D. Giebas and R. Wojszczyk, Detection of concurrency errors in multithreaded applications based on static source code analysis, IEEE Access 9 (2021), 61298-61323.
- S. Park, H. Feng, C. Park, Y. K. Lee, S. Jung, and J. Kim, EQuaTE: Efficient quantum train engine for run-time dynamic analysis and visual feedback in autonomous driving, IEEE Internet Comput. 25 (2023), no. 7, 24-31.
- X. Zhang, C. Feng, R. Li, J. Lei, and C. Tang, NeuralTaint: A key segment marking tool based on neural network, IEEE Access 7 (2019), 68786-68798.
- J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, Barren plateaus in quantum neural network training landscapes, Nature Commun. 9 (2018), no. 1, 4812.
- S. Park, H. Feng, W. Yun, C. Park, Y. Lee, S. Jung, and J. Kim, Demo: eQuaTE: efficient quantum train engine design and demonstration for dynamic software analysis, (Proc. IEEE Inter'l Conf. on Distributed Computing Systems, Hong Kong, China), 2023, pp. 1009-1012.