DOI QR코드

DOI QR Code

Design and simulation of a rectangular planar printed circuit board coil for nuclear magnetic resonance, radio frequency energy harvesting, and wireless power transfer devices

  • Mostafa Noohi (Faculty of Electrical Engineering, Sahand University of Technology) ;
  • Adel Pourmand (Faculty of Electrical Engineering, Sahand University of Technology) ;
  • Habib Badri Ghavifekr (Faculty of Electrical Engineering, Sahand University of Technology) ;
  • Ali Mirvakili (Department of Electrical Engineering, Yazd University)
  • 투고 : 2023.04.24
  • 심사 : 2023.08.09
  • 발행 : 2024.08.20

초록

In this study, a planar printed circuit board (PCB) coil with FR4 substrate was designed and simulated using the finite element method, and the results were analyzed in the frequency domain. This coil can be used in wireless power transfer (WPT) as a transmitter or receiver, eliminating wires. It can also be used as the receiver in radio frequency energy-harvesting (RF-EH) systems by optimizing the planar PCB coil to convert radio-wave energy into electricity, and it can be employed as an excitation (transmitter) or receiver coil in nuclear magnetic resonance (NMR) spectroscopy. This PCB coil can replace the conventional coil, yielding a reduced occupied volume, a fine-tuned design, reduced weight, and increased efficiency. Based on the calculated gain, power, and electromagnetic and electric field results, this planar PCB coil can be implemented in WPT, NMR spectroscopy, and RF-EH devices with minor changes. In applications such as NMR spectroscopy, it can be used as a transceiver planar PCB coil. In this design, at frequencies of 915 MHz and 40 MHz with 5 mm between coils, we received powers of 287.3 μW and 480 μW, respectively, which are suitable for an NMR coil or RF-EH system.

키워드

참고문헌

  1. N. Ashraf, S. A. Sheikh, S. A. Khan, I. Shayea, and M. Jalal, Simultaneous wireless information and power transfer with cooperative relaying for next-generation wireless networks: a review, IEEE Access 9 (2021), 71482-71504. 
  2. X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, Wireless networks with RF energy harvesting: a contemporary survey, IEEE Commun. Surv. Tutor. 17 (2014), no. 2, 757-789. 
  3. L. Yang, X. Yu, Y. Shi, and M. Wang, A four-coil structure wireless power transfer system with constant current and constant voltage charging: analysis, design, and experiment, Int. J. Circuit Theory Appl. 51 (2023), no. 1, 32-46. 
  4. M. Noohi, A. Mirvakili, and S. A. Sadrossadat, Modeling and implementation of nonlinear boost converter using local feedback deep recurrent neural network for voltage balancing in energy harvesting applications, Int. J. Circuit Theory Appl. 49 (2021), no. 12, 4231-4247. 
  5. M. Noohi, A. Mirvakili, H. Safdarkhani, and S. A. Sadrossadat, Thermally reused solar energy harvesting using current mirror cells, ETRI J. 45 (2023), 519-533. 
  6. H. Y. Lee, M. S. Kwak, G. T. Hwang, H. S. Ahn, R. A. Taylor, D. H. Ha, and S. N. Yi, Direct current piezoelectric energy harvesting based on plasmon-enhanced solar radiation pressure, Adv. Opt. Mater. 11 (2023), no. 7, 2202212. 
  7. A. Satharasinghe, T. Hughes-Riley, and T. Dias, An investigation of a wash-durable solar energy harvesting textile, Prog. Photovolt. 28 (2020), no. 6, 578-592. 
  8. H. Ryu, H. J. Yoon, and S. W. Kim, Hybrid energy harvesters: toward sustainable energy harvesting, Adv. Mater. 31 (2019), no. 34, 1802898. 
  9. X. Tang, X. Wang, R. Cattley, F. Gu, and A. D. Ball, Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review, Sensors 18 (2018), no. 12, 4113. 
  10. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, Progress in nuclear magnetic resonance spectroscopy, Elsevier, Amsterdam, 2013. 
  11. T. R. Alderson and L. E. Kay, NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function, Cell 184 (2021), no. 3, 577-595. 
  12. J. L. Paulsen, J. Franck, V. Demas, and L.-S. Bouchard, Least squares magnetic-field optimization for portable nuclear magnetic resonance magnet design, IEEE Trans. Magn. 44 (2008), no. 12, 4582-4590. 
  13. M. Gupta, C. Safvan, K. Singh, D. Lobiyal, P. Yadav, and S. Singh, Radio frequency planar coil-based on-chip probe for portable nuclear magnetic resonance, IEEE Sens. J. 19 (2018), no. 7, 2500-2508. 
  14. C. Cheng, F. Lu, Z. Zhou, W. Li, C. Zhu, H. Zhang, Z. Deng, X. Chen, and C. C. Mi, Load-independent wireless power transfer system for multiple loads over a long distance, IEEE Trans. Power Electron. 34 (2018), no. 9, 9279-9288. 
  15. Z. Yan, B. Song, Y. Zhang, K. Zhang, Z. Mao, and Y. Hu, A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles, IEEE Trans. Power Electron. 34 (2018), no. 5, 4005-4008. 
  16. D. W. Seo, J. H. Lee, and H. S. Lee, Study on two-coil and fourcoil wireless power transfer systems using Z-Parameter approach, ETRI J. 38 (2016), no. 3, 568-578. 
  17. W. Park, J. I. Moon, and I. k. Cho, Investigation of the effects of common and separate ground systems in wireless power transfer, ETRI J. 44 (2022), no. 2, 339-345. 
  18. Y. Zhang, T. Lu, Z. Zhao, F. He, K. Chen, and L. Yuan, Selective wireless power transfer to multiple loads using receivers of different resonant frequencies, IEEE Trans. Power Electron. 30 (2014), no. 11, 6001-6005. 
  19. Z. Liu, Z. Chen, and J. Li, A magnetic tank system for wireless power transfer, IEEE Microw. Wirel. Compon. Lett. 27 (2017), no. 5, 443-445. 
  20. X. Lu, P. Wang, D. Niyato, and Z. Han, Resource allocation in wireless networks with RF energy harvesting and transfer, IEEE Netw. 29 (2015), no. 6, 68-75. 
  21. M. Pinuela, P. D. Mitcheson, and S. Lucyszyn, Ambient RF energy harvesting in urban and semi-urban environments, IEEE Trans. Microw. Theory. Tech. 61 (2013), no. 7, 2715-2726. 
  22. H. Jabbar, Y. S. Song, and T. T. Jeong, RF energy harvesting system and circuits for charging of mobile devices, IEEE Trans. Consum. Electron. 56 (2010), no. 1, 247-253. 
  23. W. Zhao, K. Choi, S. Bauman, Z. Dilli, T. Salter, and M. Peckerar, A radio-frequency energy harvesting scheme for use in low-power ad hoc distributed networks, IEEE Trans. Circuits Syst. II Express Briefs 59 (2012), no. 9, 573-577. 
  24. J. A. Estrada, E. Kwiatkowski, A. L opez-Yela, M. Borgonos- Garcia, D. Segovia-Vargas, T. Barton, Z. Popovic, RF-harvesting tightly coupled rectenna array tee-shirt with greater than octave bandwidth, IEEE Trans. Microw. Theory. Tech. 68 (2020), no. 9, 3908-3919. 
  25. C. Song, A. Lopez-Yela, Y. Huang, D. Segovia-Vargas, Y. Zhuang, Y. Wang, and J. Zhou, A novel quartz clock with integrated wireless energy harvesting and sensing functions, IEEE Trans. Ind. Electron. 66 (2018), no. 5, 4042-4053. 
  26. P. Gomez, D. Litvinov, and S. Khizroev, Calculation of minimum parameters required for low-field low-size nano nuclear magnetic resonance (NanoNMR), IEEE Trans. Magn. 44 (2008), no. 11, 4464-4467. 
  27. H.-L. Lee, I.-T. Lin, J.-H. Chen, H.-E. Horng, and H.-C. Yang, High-T/sub c/superconducting receiving coils for nuclear magnetic resonance imaging, IEEE Trans. Appl. Supercond. 15 (2005), no. 2, 1326-1329. 
  28. T. Yamada, A. Saito, S. Oikawa, K. Koshita, M. Takahashi, H. Maeda, and S. Ohshima, Electromagnetic evaluation of HTS RF coils for nuclear magnetic resonance, IEEE Trans. Appl. Supercond. 25 (2014), no. 3, 1-4. 
  29. H. Davoodi, N. Nordin, H. Munakata, J. G. Korvink, N. MacKinnon, and V. Badilita, Untuned broadband spiral microcoils achieve sensitive multi-nuclear NMR TX/RX from microfluidic samples, Sci. Rep. 11 (2021), no. 1, 7798. 
  30. T. Sun, X. Xie, and Z. Wang, Wireless power transfer for medical microsystems, Springer, New York, NY, 2013. 
  31. W. L. Stutzman and G. A. Thiele, Antenna theory and design, John Wiley & Sons, Hoboken, NJ, 2012. 
  32. L.-G. Tran, H.-K. Cha, and W.-T. Park, RF power harvesting: a review on designing methodologies and applications, Micro Nano Syst. Lett. 5 (2017), no. 1, 1-16. 
  33. Y. Chen, Energy harvesting communications: principles and theories, John Wiley & Sons, Hoboken, NJ, 2019. 
  34. R. Ranjan and N. Sinha, Nuclear magnetic resonance (NMR)-based metabolomics for cancer research, NMR Biomed. 32 (2019), no. 10, e3916. 
  35. O. Pecher, J. Carretero-Gonzalez, K. J. Griffith, and C. P. Grey, Materials methods: NMR in battery research, Chem. Mater. 29 (2017), no. 1, 213-242. 
  36. K. J. D. MacKenzie and M. E. Smith, Multinuclear solid-state nuclear magnetic resonance of inorganic materials, Elsevier, Oxford, 2002. 
  37. W. H. Hayt and J. A. Buck, Engineering electromagnetics, Erlangga, Boston, 2006. 
  38. J. H. Kim, B. H. Choi, H. R. Kim, and C. T. Rim, 2-D synthesized magnetic field focusing technology with loop coils distributed in a rectangular formation, IEEE Trans. Ind. Electron 66 (2018), no. 7, 5558-5566. 
  39. Y. Zhang, L. Wang, Y. Guo, and Y. Zhang, Optimisation of planar rectangular coil achieving uniform magnetic field distribution for EV wireless charging based on genetic algorithm, IET Power Electron. 12 (2019), no. 10, 2706-2712. 
  40. S. Jeong, D. H. Kim, J. Song, H. Kim, S. Lee, C. Song, and J. Kim, Smartwatch strap wireless power transfer system with flexible PCB coil and shielding material, IEEE Trans. Ind. Electron. 66 (2018), no. 5, 4054-4064. 
  41. Y. Zhao, J. Wang, S. Ban, X. Hu, and D. Si, Design and theoretical analysis of current transformer based on B-dot planar printed circuit board coil, Sens. Rev. 37 (2017), no. 3, 282-288. 
  42. C.-L. Yang, C.-K. Chang, S.-Y. Lee, S.-J. Chang, and L.-Y. Chiou, Efficient four-coil wireless power transfer for deep brain stimulation, IEEE Trans. Microw. Theory. Tech. 65 (2017), no. 7, 2496-2507.