Acknowledgement
본 논문은 한국전자통신연구원 연구개발지원사업의 일환으로 수행되었음[2022-0-00021, 골든타임 확보를 위한 실종자 수색 다수 드론 자율비행 핵심기술 개발].
References
- https://builtin.com/articles/drone-delivery-companies
- Forbes, "Farm with a view: How drone technology is taking agriculture to a new level," 2023. 2. 23.
- Telenor, "When every second counts: Mobile 5G solution could be a game changer in emergency situations," 2022. 11. 8.
- 김수성, 정성구, 차지훈, "드론 자율비행 기술 동향," 전자통신동향분석, 제36권 제2호, 2021, pp. 1-11. https://doi.org/10.22648/ETRI.2021.J.360201
- S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006.
- O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," Int. J. Robot. Res., vol. 5, no. 1, 1986, pp. 90-98. https://doi.org/10.1177/027836498600500106
- E.W. Dijkstra, "A note on two problems in connexion with graphs," vol. 1, 1959, pp. 269-271.
- P.E. Hart et al., "A formal basis for the heuristic determination of minimum cost paths," IEEE Trans. Syst. Sci. Cybern., vol. 4, no. 2, 1968, pp. 100-107. https://doi.org/10.1109/TSSC.1968.300136
- L.E. Kavraki et al., "Probabilistic roadmaps for path planning in high-dimensional configuration spaces," IEEE Trans. Robot. Autom., vol. 12, no. 4, 1996, pp. 566-580. https://doi.org/10.1109/70.508439
- S. LaValle, "Rapidly-exploring random trees: A new tool for path planning," Technical Report, Computer Science Department, Iowa State University, 1998.
- S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal motion planning," Int. J. Robot. Res., vol. 30, no. 7, 2011, pp. 846-894. https://doi.org/10.1177/0278364911406761
- M. Zucker et al., "CHOMP: Covariant hamiltonian optimization for motion planning," Int. J. Robot. Res., vol. 32, no. 9, 2013, pp. 1164-1193. https://doi.org/10.1177/0278364913488805
- A. Bircher et al., "Receding horizon "next-best-view" planner for 3d exploration," in Proc. ICRA, (Stockholm, Sweden), May 2016.
- T. Dang et al., "Graph-based subterranean exploration path planning using aerial and legged robots," J. Field Robot., vol. 37, no. 8, 2020, pp. 1363-1388. https://doi.org/10.1002/rob.21993
- M. Kulkarni et al., "Autonomous teamed exploration of subterranean environments using legged and aerial robots," in Proc. ICRA, (Philadelphia, PA, USA), May 2022.
- B. Zhou et al., "FUEL: Fast UAV exploration using incremental frontier structure and hierarchical planning," IEEE Robot. Autom. Lett., vol. 6, no. 2, 2021, pp. 779-786. https://doi.org/10.1109/LRA.2021.3051563
- B. Zhou et al., "RACER: Rapid collaborative exploration with a decentralized multi-uav system," IEEE Trans. Robot., vol. 39, no. 3, 2023, pp. 1816-1835.
- T. Tian et al., "Search and rescue under the forest canopy using multiple UAVs," Int. J. Robot. Res., vol. 39, no. 10-11, 2020, pp. 1201-1221. https://doi.org/10.1177/0278364920929398
- Bartolomei et al., "Fast multi-UAV decentralized exploration of forests," IEEE Robot. Autom. Lett., vol. 8, no. 9, 2023, pp. 5576-5583. https://doi.org/10.1109/LRA.2023.3296037
- A. Stentz, "Optimal and efficient path planning for partially-known environments," in Proc. ICRA, (San Diego, CA, USA), May 1994.
- R. Bohlin and L.E. Kavraki, "Path planning using lazy PRM," in Proc. ICRA, (San Francisco, CA, USA), Apr. 2000.
- J.D. Gammell, S.S. Srinivasa, and T.D. Barfoot, "Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic," in Proc. IEEE/RSJ IROS, (Chicago, IL, USA), Sept. 2014.
- J. Schulman et al., "Finding locally optimal, collisionfree trajectories with sequential convex optimization," in Proc. RSS IX, (Berlin, Germany), June 2013.