DOI QR코드

DOI QR Code

Time-reversal microwave focusing using multistatic data

  • Won-Young Song (Terrestrial and Nonterrestrial Integrated Telecommunications Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Soon-Ik Jeon (Terrestrial and Nonterrestrial Integrated Telecommunications Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Seong-Ho Son (Department of Mechanical Engineering, Soonchunhyang University) ;
  • Kwang-Jae Lee (Terrestrial and Nonterrestrial Integrated Telecommunications Research Laboratory, Electronics and Telecommunications Research Institute)
  • Received : 2022.11.23
  • Accepted : 2023.06.29
  • Published : 2024.04.20

Abstract

Various techniques for noninvasively focus microwave energy on lesions have been proposed for thermotherapy. To focus the microwave energy on the lesion, a focusing parameter, which is referred to as the magnitude and phase of microwaves radiated from an external array antenna, is very important. Although the finite-difference time-domain (FDTD)-based time-reversal (TR) focusing algorithm is widely used, it has a long processing time if the focusing target position changes or if optimization is needed. We propose a technique to obtain multistatic data (MSD) based on Green's function and use it to derive the focusing parameters. Computer simulations were used to evaluate the electric fields inside the object using the FDTD method and Green's function as well as to compare the focusing parameters using FDTD- and MSD-based TR focusing algorithms. Regardless of the use of Green's function, the processing time of MSD-based TR focusing algorithms reduces to approximately 1/2 or 1/590 compared with the FDTD-based algorithm. In addition, we optimize the focusing parameters to eliminate hotspots, which are unnecessary focusing positions, by adding phase-reversed electric fields and confirm hotspot suppression through simulations.

Keywords

Acknowledgement

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (no. 2021-0-00731).

References

  1. A. J. Fenn, Adaptive phased array thermotherapy for cancer, Artech House, Norwood, 2009. 
  2. M. Converse, E. J. Bond, B. D. V. Veen, and S. C. Hagness, A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment, IEEE Trans. Microw. Theory Tech. 54 (2006), 2169-2180.  https://doi.org/10.1109/TMTT.2006.872790
  3. P. T. Nguyen, A. M. Abbosh, and S. Crozier, 3-D focused microwave hyperthermia for breast cancer treatment with experimental validation, IEEE Trans. Antennas Propag. 65 (2017), 3489-3500.  https://doi.org/10.1109/TAP.2017.2700164
  4. J. Li, B. Wang, D. Zhang, C. Li, Y. Zhu, Y. Zou, B. Chen, T. Wu, and X. Wang, A preclinical system prototype for focused microwave breast hyperthermia guided by compressive thermoacoustic tomography, IEEE Trans. Biomed. Eng. 68 (2021), 2289-2300.  https://doi.org/10.1109/TBME.2021.3059869
  5. J. Redr, T. Pokorny, T. Drizdal, O. Fiser, M. Brunat, J. Vrba, and D. Vrba, Microwave hyperthermia of brain tumors: a 2D assessment parametric numerical study, Sensors 22 (2022), 6115. 
  6. M. Zanoli and H. D. Trefna, The hot-to-cold spot quotient for SAR-based treatment planning in deep microwave hyperthermia, Int. J. Hyperthermia 39 (2022), 1421-1439.  https://doi.org/10.1080/02656736.2022.2136411
  7. P. Takook, H. D. Trefna, X. Zeng, A. Fhager, and M. Persson, A computational study using time reversal focusing for hyperthermia treatment planning, Prog. Electromagn. Res. B 73 (2017), 117-130.  https://doi.org/10.2528/PIERB16111605
  8. H. D. Trefna, J. Vrba, and M. Persson, Time-reversal focusing in microwave hyperthermia for deep-seated tumors, Phys. Med. Biol. 55 (2010), 2167-2185.  https://doi.org/10.1088/0031-9155/55/8/004
  9. A. J. Fenn, Breast cancer treatment by focused microwave thermotherapy, Jones and Bartlett Publishers, Sudbury, 2007. 
  10. J. Stang, M. Haynes, P. Carson, and M. Moghaddam, A preclinical system prototype for focused microwave thermal therapy of the breast, IEEE Trans. Biomed. Eng. 59 (2012), 2431-2438.  https://doi.org/10.1109/TBME.2012.2199492
  11. P. Kosmas, Application of the DORT technique to FDTD-based time reversal for microwave breast cancer detection, (European Microwave Conference, Munich Germany), 2007, pp. 306-308. 
  12. K. Lee, J. Kim, S. Son, and S. Kang, MR images-based microwave focusing for thermal therapy, (proceedings of the International conference on research in adaptive and convergent systems, Krakow, Poland), 2017, pp.126-131. 
  13. J. Kim, S. Jeon, K. Lee, B. Kim, N. Simonov, J. Yoon, N. Kim, and S. Son, Computational study on focused microwave thermotherapy for knee pathological treatment, IET Microw. Antennas Propag. 12 (2018), 1901-1907.  https://doi.org/10.1049/iet-map.2017.0924
  14. J. Kim, K. Lee, B. Kim, S. Jeon, and S. Son, Numerical and experimental assessments of focused microwave thermotherapy system at 925 MHz, ETRI J. 41 (2019), 850-862.  https://doi.org/10.4218/etrij.2018-0088
  15. S. Mukherjee, L. Udpa, S. Udpa, E. J. Rothwell, and Y. Deng, Microwave time-reversal mirror for imaging and hyperthermia treatment of breast tumors, Prog. Electromagn. Res. M 77 (2019), 1-6.  https://doi.org/10.2528/PIERM18092008
  16. M. Zanoli and H. D. Trefna, Iterative time-reversal for multi-frequency hyperthermia, Phys. Med. Biol. 66 (2021), 1-18.  https://doi.org/10.1088/1361-6560/abd41a
  17. M. J. Hajiahmadi, R. Faraji-Dana, and C. Caloz, Metasurfacebased time-reversal focusing for brain tumor microwave hyperthermia, IEEE Trans. Antennas Propag. 70 (2022), 12237-12246.  https://doi.org/10.1109/TAP.2022.3210691
  18. A. J. Devaney, Time reversal imaging of obscured targets from multistatic data, IEEE Trans. Antennas Propag. 53 (2005), 1600-1610.  https://doi.org/10.1109/TAP.2005.846723
  19. G. Giorgi, M. Brignone, R. Aramini, and M. Piana, Application of the inhomogeneous Lippmann-Schwinger equation to inverse scattering problems, SIAM J. Appl. Math. 73 (2013), 212-231.  https://doi.org/10.1137/120869584
  20. E. K. Arici and A. Yapar, Numerical calculation of 2-D inhomogeneous media Green's function and some applications in electromagnetic scattering problems, IEEE Trans. Antennas Propag. 67 (2019), 369-377.  https://doi.org/10.1109/TAP.2018.2877266
  21. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 3rd ed., Artech House, Norwood, 2005. 
  22. D. M. Sullivan, Electromagnetic simulation using the FDTD method, Wiley-IEEE Press, New York, 2000. 
  23. C. Gabriel, Compilation of the dielectric properties of body tissues at RF and microwave frequencies, report N.AL/OE-TR1996-0037, occupational and environmental health directorate, radiofrequency radiation division, brooks air force base, Texas (1996). 
  24. P. A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. C. Gosselin, D. Payne, A. Klingenbock, and N. Kuster, IT'IS database for thermal and electromagnetic parameters of biological tissues.