DOI QR코드

DOI QR Code

Wireless Access Technologies for Enabling High-Capacity Ultrareliable Services

대용량 초정밀 서비스 실현을 위한 무선 액세스 기술 동향

  • K. Chang ;
  • Y.J. Ko ;
  • I.G. Kim
  • 장갑석 (6G무선방식연구실) ;
  • 고영조 (6G무선방식연구실) ;
  • 김일규 (이동통신연구본부)
  • Published : 2024.02.01

Abstract

The advent of 6G networks, anticipated around 2030, will lead to the seamless convergence of high-capacity ultrareliable communications with precision sensing. This convergence will revolutionize wireless communications and enable applications such as autonomous and precise manufacturing even in vulnerable radio environments and delivering immersive extended reality experiences to passengers on high-speed trains. We present technological trends and standardization efforts toward the development of the key wireless access elements to meet the demands of this upcoming futuristic era.

Keywords

Acknowledgement

이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임[No. 2018-0-00218, 초고주파 이동통신 무선백홀 전문연구실].

References

  1. R. Li, Network 2030: Market Drivers and Prospects, 1st ITU Workshop on Network 2030, New York, USA, Oct. 2nd, 2018. 
  2. ITU-R, Framework and overall objectives of the future development of IMT for 2030 and beyond, ITU-R WP5D, June, 2023. 
  3. K. Chang et al., "Synchronization under hardware impairments in over-6-GHz wireless industrial IoT systems," IEEE IoT-J, vol. 10, no. 7, 2023, pp. 6082-6099.  https://doi.org/10.1109/JIOT.2022.3222835
  4. C. Qing et al., "CNN-based timing synchronization for OFDM systems assisted by initial path acquisition in frequency selective fading channel," in Proc. MILCOM 2022, (Rockville, MD, USA), Nov. 2022. 
  5. Nokia, Summary of E-mail discussion: Propagation delay for TSN, R2-2009755, 3GPP TSG-RAN WG2 Meeting #112e, Nov. 2020. 
  6. 3GPP TS 38.300 V17.6.0 Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description; Stage 2(Release 17), 2023. 
  7. D. Gabor, "Theory of communication," J. Inst. Elec. Eng., vol. 93, no. 26, 1946, pp. 429-457.  https://doi.org/10.1049/ji-3-2.1946.0076
  8. S.B. Weinstein and P.M. Ebert, "Data transmission by frequency division multiplexing using the discrete fourier transform," IEEE Trans. Comm. Technol., vol. 19, no. 5, 1971, pp. 628-634.  https://doi.org/10.1109/TCOM.1971.1090705
  9. H.G. Myung, J. Lim, and D.J. Goodman, "Single carrier FDMA for uplink wireless transmission," IEEE Vehicular Tech. Mag., vol. 1, no. 3, 2006, pp. 30-38.  https://doi.org/10.1109/MVT.2006.307304
  10. F. Pancaldi et al., "Single-carrier frequency domain equalization," IEEE Sig. Proc. Mag., vol. 25, no. 5, 2006, pp. 37-56.  https://doi.org/10.1109/MSP.2008.926657
  11. R. Hadani et al., "Orthogonal time frequency space modulation," in Proc. IEEE WCNC, (San Francisco, CA, USA), Mar. 2017, pp. 1-6. 
  12. P. Raviteja et al., "Interference cancellation and iterative detection for orthogonal time frequency space modulation," IEEE Trans. Wireless Commun., vol. 17, no. 10, 2018, pp. 6501-6515.  https://doi.org/10.1109/TWC.2018.2860011
  13. J.L. Hernando and A.G. Armada, "Frequency-modulated OFDM: A new waveform for high-mobility wireless communications," IEEE Trans. Commun., vol. 71, no. 1, 2023, pp. 540-552. 
  14. S.C. Thompson et al., "Constant envelope OFDM," IEEE Trans. Commun., vol. 56, no. 8, 2008, pp. 1300-1312.  https://doi.org/10.1109/TCOMM.2008.070043
  15. X. Ouyang and J. Zhao, "Orthogonal chirp division multiplexing," IEEE Trans. Commun., vol. 64, no. 9, 2016, pp. 3946-3957.  https://doi.org/10.1109/TCOMM.2016.2594792
  16. A. Bemani, N. Ksairi, and M. Kountouris, "AFDM: A full diversity next generation waveform for high mobility communications," in Proc. IEEE ICC Workshops, (Montreal, Canada), June 2021. 
  17. IEEE Std 802.15.3c, Part 15.3: Wireless Medium Access Control(MAC) and Physical Layer(PHY) Specifications for High Rate Wireless Personal Area Networks(WPANs). Amendment 2: Millimeter-wave-based Alternative Physical Layer Extension, 2009. 
  18. IEEE Std. 802.11ad, Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications. Amendment 3: Enhancements for Very High Throughput in the 60GHz Band, 2012. 
  19. 3GPP TRG RAN WG1, TDocR1-2006982, Issue Summary for Physical Layer Changes for Supporting NR from 52.6GHz to 71GHz, Aug. 2020. 
  20. T.L. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Commun., vol. 9, no. 11, 2010, pp. 3590-3600.  https://doi.org/10.1109/TWC.2010.092810.091092
  21. S. Elhoushy et al., "Cell-free massive MIMO: A survey," IEEE Commun. Surv. Tutorials, vol. 24, no. 1, 2022, pp. 492-523.  https://doi.org/10.1109/COMST.2021.3123267
  22. K. Kim et al., "Beamforming and power optimization for user fairness in Cell-free MIMO systems," IEEE Access, vol. 11, 2023. 
  23. Z. Wang et al., "A tutorial on extremely large-scale MIMO for 6G: Fundamentals, signal processing, and applications," arXiv preprint, CoRR, 2023, arXiv: 2307.07340. 
  24. H. Jin et al., "Massive MIMO evolution toward 3GPP release 18," IEEE J. Sel. Areas Commun., vol. 41, no. 6, 2023, pp. 1635-1654. 
  25. RWS-230207, MIMO enhancements in Rel-19, Samsung, 3GPP TSG RAN Rel-19 Workshop, Taipei, June 15-16, 2023. 
  26. H-Y. Kwak et al., "Boosting learning for LDPC codes to improve the error-floor performance," in Proc. NeurIPS 2023, (New Orleans, LA, USA), Dec. 2023. 
  27. 3GPP TS 38.213 V17.7.0, Technical Specification Group Radio Access Network; NR; Physical layer procedures for control(Release 17), Sept. 2023. 
  28. 3GPP TS 38.214 V17.7.0, Technical Specification Group Radio Access Network; NR; Physical layer procedures for data(Release 17), Sept. 2023.