Acknowledgement
This research was supported by Culture, Sports and Tourism R&D Program through the Korea Creative Content Agency(KOCCA) grant funded by the Ministry of Culture, Sports and Tourism(MCST) in 2024(Project Name: 3D holographic infotainment system design R&D professional human resources, Project Number: RS-2024-00401213, Contribution Rate: 100%)
References
- Al-Dabbagh, A. M., & Ilyas, M. (2023). Uni-temporal Sentinel-2 imagery for wildfire detection using deep learning semantic segmentation models. Geomatics, Natural Hazards and Risk, 14(1), 2196370.
- Dong, H., Yuan, M., Wang, S., Zhang, L., Bao, W., Liu, Y., & Hu, Q. (2023). PHAM-YOLO: A parallel hybrid attention mechanism network for defect detection of meter in substation. Sensors, 23(13), 6052.
- Fu, J., Zheng, H., & Mei, T. (2017). Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-Grained Image Recognition. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21-26 July 2017.
- Jindal, P., Gupta, H., Pachauri, N., Sharma, V., & Verma, O. P. (2021). Real-time wildfire detection via image-based deep learning algorithm. In Soft Computing: Theories and Applications: Proceedings of SoCTA 2020, Volume 2 (pp. 539-550). Springer Singapore.
- Liu, P., Xiang, P., & Lu, D. (2023). A new multi-sensor fire detection method based on LSTM networks with environmental information fusion. Neural Computing and Applications, 35(36), 25275-25289.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32.
- Redmon, J. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition.
- Ripple, W. J., Wolf, C., Gregg, J. W., Rockstrom, J., Mann, M. E., Oreskes, N., ... & Crowther, T. W. (2024). The 2024 state of the climate report: Perilous times on planet Earth. BioScience, biae087.
- Scott, J. H., Thompson, M. P., & Calkin, D. E. (2013). A wildfire risk assessment framework for land and resource management.
- Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.
- Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7464-7475).
- Wang, C. Y., Liao, H. Y. M., & Yeh, I. H. (2022). Designing network design strategies through gradient path analysis. arXiv preprint arXiv:2211.04800.
- Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., ... & Tang, X. (2017). Residual attention network for image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3156-3164).
- Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV) (pp. 3-19).
- Yu, L., Wang, N., & Meng, X. (2005, September). Real-time forest fire detection with wireless sensor networks. In Proceedings. 2005 International Conference on Wireless Communications, Networking and Mobile Computing, 2005. (Vol. 2, pp. 1214-1217). IEEE.
- Zope, V., Dadlani, T., Matai, A., Tembhurnikar, P., & Kalani, R. (2020, May). IoT sensor and deep neural network based wildfire prediction system. In 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 205-208). IEEE.