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Abstract 

This study aims to evaluate the performance of noise reduction in LDCT images using an SRCNN based AI model. Using the 

Lungman phantom, images of effective mAs 72 recommended by AAPM and effective mAs 709 without using the AEC function 

were acquired. SRCNN model input image used a GT, label image and GT image was used as a low-resolution image. Image 

evaluation was conducted in the lung apex, middle level lung, and carina of trachea regions, and PSNR, SSIM, SSIM error map, 

SNR, MSE, and RMSE were used as evaluation indices are based on label image. Lung apex results showed increase of 19.52, 

29.69 and 23.8%, and decreased of 71.37, 46.43% respectively. Middle level lung results showed increase of 20.99, 20.0 and 

26.26%, and decreased of 72.67, 47.72% respectively. Carina of trachea results showed increase of 22.05, 32.31 and 28.18%, and 

decreased of 73.93, 48.93% respectively. Image evaluation results were improvement in image quality due to noise reduction was 

confirmed using the SRCNN based AI model. Therefore, confirmed that applying the SRCNN to LDCT images can improve 

image quality by reducing noise, and it is considered that AI based post processing will be useful for CT images without AI. 
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1. Introduction12 
 

Computed tomography (CT) uses X-ray to visualize the 

inside of the human body for internal medicine such as 

tumors of bleeding and surgical injuries caused by trauma. 

Because CT was possible to obtain anatomical radiography 

through a non-invasive, it is recognized as one of the 

essential radiography examinations for diagnosing various 

diseases. In addition, CT hardware and software have 

advanced compared to the past, resulting in relatively faster 

radiographic image acquisition times and improvements in 
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radiographic image quality. However, despite technological 

advancements, radiographic image noise caused by X-ray 

and detector during CT scans results in a decrease in 

radiographic image quality (Diwakar et al., 2018). Noise in 

radiographic images can reduce the signal quality, 

significantly impacting the reading of medical radiographic 

images for diagnosing various diseases (Christianson, 2015). 

Due to this fundamental cause of noise, each CT 

manufacturer removes noise in various ways through 

software algorithms (Joemai, 2013; Fan, 2014; Ellmann, 

2018). During a CT scan to examine lung tumors, nodules, 
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or tuberculosis, high contrast was needed to clearly 

distinguish lung tissue, so a low dose Chest CT scan (Kubo 

et al., 2016, Asla et al., 2021). However, to improve contrast, 

using a low dose X-ray during CT scan increases noise, 

which in turn degrades image quality (Alshamari et al., 2015) 

Recently, artificial intelligence (AI) models that enhance 

low resolution to high resolution have been widely used in 

the entertainment industry, such as in movies and 

photography, showing improvements in image quality, 

including noise reduction and increased pixel count 

compared to the original. Latest CT equipped with iterative 

reconstruction algorithms or AI models were being 

introduced to improve image quality and reduce noise in 

radiographic imaging (Punwani et al., 2008, McLaughlin et 

al., 2014, Eisentopf et al., 2013). Therefore, this study aims 

to investigate the noise reduction performance when 

applying post processing to low dose chest CT images using 

a high resolution generating AI model based on Super 

Resolution Convolutional Neural Network (SRCNN). 

 
 

2. Research Methods and Materials 
 

2.1. Acquisition of CT Image Dataset 
 

Lungman phantom (Chest Phantom N1, Kyoto Kagaku 

Inc., Japan) was used to acquire low dose chest CT images 

to be used for AI model learning. CT scans were performed 

using the Somatom Definition Force (Siemens Healthineers, 

Forchheim, Germany). Scan parameters were set according 

to the low dose screening CT protocol provided by AAPM: 

100 kVp, pitch 1.2, rotation time 0.5 sec, spiral scan mode, 

slice thickness 1.0 mm, increment 0.7 mm, and ADMIRE 

strength 3. To obtain data corresponding to low resolution, 

images were acquired with an effective mAs 72 (Ground 

Truth Image, GT image) as recommended by AAPM 

(Alexandria, 2019). For data corresponding to high 

resolution, images were acquired with an effective mAs 709 

(Label Image) without using the AEC function. Table 1 

shows the CT scan parameter for image dataset acquisition. 

 
Table 1: CT scan parameter for images dataset acquisition 

Parameter GT Label 

kVp 100 

Pitch 1.2 

Rotation Time (sec) 0.5 

Slice Thickness (mm) 1.0 

Increment (mm) 0.7 

Scan Mode Spiral 

Admire Strength 3 

Effective mAs 72 709 

Note: GT was Ground Truth, Effective mAs was mean mAs per unit 

length along the longitudinal axis (Effective mAs =
𝑚𝐴𝑠

𝑃𝑖𝑐𝑡ℎ
) 

 

2.2. SRCNN Model Architecture 
 

CT images were valuable for disease diagnosis, but data 

volume generated in a single scan was extremely large. To 

secure storage capacity on hard drives and other storage 

devices, 512 pixels were typically used as the standard. 

However, this can lead to difficulties in precise diagnosis. 

SRCNN model used in this study is less computer resource 

intensive compared to models such as enhanced deep super 

resolution network (EDSR), very deep convolutional 

networks (VDSR), and Generative Adversarial Network 

(GAN), making it a model that is not significantly affected 

by hardware limitations. Interpreter used for configuring the 

SRCNN model was Python (ver. 3.9.18). AI framework was 

TensorFlow (ver. 2.15.0) and Keras (ver. 2.15.0). For data 

preprocessing and visualization libraries were NumPy (ver. 

1.26.2), pandas (ver. 2.1.4), OpenCV (ver. 4.10.0), and 

Matplotlib (ver. 3.8.2) were used. SRCNN model structure 

for denoising consists of a convolutional neural network 

(CNN) with three layers: patch extraction and representation 

(F1(𝑌) ) using 128 filters and kernel, non-linear mapping 

( F2(𝑌) ) using 64 filters and kernel, and reconstruction 

(𝐹(𝑌)) using 3 filters and kernel (Chao Dong. Et al., 2015). 

Figure 1 shows the SRCNN architecture for low dose chest 

CT denoising. 

 

 
Figure 1: SRCNN architecture for low dose chest CT 
denoising 
 

The equation for each layer was shown in Equation (1). 

 

{

F1(𝑌) = max(0, 𝑊1 × 𝑌 + 𝐵1)       

F2(𝑌) = max(0, 𝑊2 × 𝐹1(𝑌) + 𝐵2)

F(Y) = W3 × 𝐹2(𝑌) + 𝐵3                 

              (1) 

 

where F1(𝑌) was patch extraction and representation, 

F2(𝑌) was Non-linear mapping, F(Y) was Reconstruction 

or high resolution image, W  was weight, 𝑌  was low 

resolution image, 𝐵 was bias. 
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Input images used for model training utilized the GT 

images instead of converting the label images to low 

resolution. Prior to training, fixed parameters were set as 

follows: fix seed for reproducibility, epochs set to 50 to 

prevent overfitting, batch size set to 1 for observe consistent 

learning performance, learning rate was set default 0.0001 

optimizer was set Adam, and padding set to same to 

maintain pixel dimensions. During model training, the 

optimizer used was Adam, the loss function was mean 

squared error (MSE), and the metrics used were peak signal 

to noise ratio (PSNR), structural similarity index map 

(SSIM). 

 

2.3. Evaluation Indices of Image Noise 
 

Evaluation of image noise was conducted by 

categorizing into three regions: lung apex where 

tuberculosis primarily occurs, middle level lung where 

neoplasms such as tumors occurs, and carina of the trachea 

where carcinoma of the lymph node occurs. Additionally, 

the analysis was performed using ImageJ software (National 

Institutes of Health, Bethesda, Maryland, ver. bundled with 

Java 8) based on the label images. The metrics used for noise 

evaluation included PSNR, SSIM, SSIM error map, signal 

to noise ratio (SNR), MSE, and root mean squared error 

(RMSE). All indices were mainly used when measuring 

noise in an image, and PSNR evaluates the loss information 

on image quality, and the unit is decibel (㏈), and the lower 

the loss information in the image, the higher the value. The 

equation for PSNR was shown in Equation (2). 

 

PSNR = 10log
𝑆2

𝑀𝑆𝐸
                           (2) 

 

where 𝑆  was maximum value in images, 𝑀𝑆𝐸  was 

mean squared error. 

 

SSIM compares the luminance, contrast, and structure of 

two images to calculate the difference in image quality and 

similarity perceived by the visual organ, and indicates a 

higher value when the image information loss is less. The 

equation for SSIM was shown in Equation (3). 

 

SSIM =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2 +𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
                   (3) 

 

where x and y were comparison images, 𝜇𝑥 and 𝜇𝑦 

were local means for images x and y, 𝜎𝑥  and 𝜎𝑦  were 

cross covariance for images x, y, 𝐶1 , 𝐶2 ,  and 𝐶3  were 

dynamic range. 

 

SNR was signal quality evaluation, and the higher the 

value, the less noise there is and the clearer the signal. The 

equation for SNR was shown in Equation (4). 

 

SNR =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
                                (4) 

 

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  was signal intensity, 𝑃𝑛𝑜𝑖𝑠𝑒  was signal 

noise. 

 

MSE was quality measurement metric for image 

comparison, and it index a value close to 0 when the image 

is similar to the original. The equation for MSE was shown 

in Equation (5). 

 

MSE =
1

𝑛
∑ (�̂�𝑖 − 𝑌𝑖)

2𝑛
𝑖=1                        (5) 

 

where n was number of datasets, �̂�𝑖 was actual value, 

𝑌𝑖 was predicted value. 

 

RMSE was used to complement the drawback of 

increased error values due to squaring in MSE calculations, 

and it index a value close to 0 when the image was similar 

to the original. The equation for RMSE was shown in 

Equation (6). 

 

RMSE = √
1

𝑛
∑ (�̂�𝑖 − 𝑌𝑖)

2𝑛
𝑖=1                     (6) 

 

where n was number of datasets, �̂�𝑖 was actual value, 

𝑌𝑖 was predicted value. 

 

 

3. Results 

 

3.1. Results of SRCNN Model Training  
 

During the training of the SRCNN model using a low-

dose chest CT image dataset, it was confirmed that as the 

number of epochs increased, the loss decreased, and both 

PSNR and SSIM increased, indicating proper training. All 

metrics saturated at 50 epochs. Figure 2 shows the SRCNN 

model training graph based on loss, PSNR, SSIM metrics. 
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Figure 2: Results of SRCNN model training graph based on 
loss, PSNR, SSIM 

 

Comparison three region images for each region using 

the model. Figure 3 shows the comparison of three region 

images. 

 

 

Figure 3: Results of images comparison by lung apex, 
middle level lung, carina of trachea 

 
3.2. Results of Images Noise 
 

Based on the label image, the PSNR of lung apex region 

image increased by 19.52% from GT and predicted images 

to 27.82 and 33.2 ㏈, respectively. SSIM increased by 29.69% 

to 0.64 and 0.83. SNR increased by 23.8% to 22.94 and 28.4. 

MSE decreased by 71.37% to 107.42 and 30.75. RMSE 

decreased by 46.43% to 10.36 and 5.55. For middle level 

lung region image, PSNR increased by 20.99% from GT and 

predicted images to 26.82 and 32.45 ㏈, respectively. SSIM 

increased by 20.0% to 0.7 and 0.84. SNR increased by 26.26% 

to 21.48 and 27.12. MSE decreased by 72.67% to 135.36 

and 36.99. RMSE decreased by 47.72% to 11.63 and 6.08. 

For carina of trachea region image, PSNR increased by 

22.05% from GT and predicted images to 26.48 and 32.32 

㏈, respectively. SSIM increased by 32.31% to 0.65 and 

0.86. SNR increased by 28.18% to 20.3 and 26.7. MSE 

decreased by 73.93% to 146.35 and 38.15. RMSE decreased 

by 48.93% to 12.1 and 6.18. Table 2 shows the images 

evaluation indices. 

 
Table 2: Results of images evaluation indices 

Index 

Region 

Apex Mid. Carina 

GT Pred. GT Pred. GT Pred. 

PSNR 27.82 33.25 26.82 32.45 26.48 32.32 

SSIM 0.64 0.83 0.70 0.84 0.65 0.86 

SNR 22.94 28.40 24.48 27.12 20.83 26.70 

MSE 107.42 30.75 135.36 36.99 146.35 38.15 

RMSE 10.36 5.55 11.63 6.08 12.10 6.18 

Note: GT was Ground Truth Image, Pred. was Predicted image on 
SRCNN, Mid. was middle. 

 
Evaluation of image noise in low dose chest CT revealed 

that the signal and image similarity increased in all regions, 

while noise decreased. This was further confirmed through 

the SSIM error map, which demonstrated noise reduction 

and increased image similarity. Figure 4 shows the 

comparison of three region images of SSIM map. 
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Figure 4: Comparison of SSIM map results between GT and 
Predicted image based on Label image 
 

 

4. Discussion 
 

CT scans use X-rays to non-invasively visualize the 

anatomical structure of internal organs, providing crucial 

medical radiographic images for diagnosing medical and 

surgical conditions. However, this method also has the 

downside of exposing patients to radiation. Despite of CT 

scans are applied because the goal of maintaining life is clear. 

Consequently, several CT manufacturers have been working 

hard to reduce radiation doses and achieve optimal imaging. 

Still, noise caused by the limitations of X-rays and 

mechanical factors cannot be entirely eliminated (Diwakar, 

M., 2018, McLaughlin, P. D., 2014, Li, Z., 2014). Therefore, 

this study aimed to confirm that AI models were useful for 

noise reduction. Original SRCNN model generates a low 

resolution image and performs end to end mapping with the 

corresponding high resolution image using a simple CNN 

structure (Dong et al., 2015). Since its release in 2015, 

various noise reduction models using CNN, GAN, and 

transformer models have been developed (Sadia et al. 2024). 

In previous studies on CNN based denoising models, Yufei 

Tang et al. found that the content-noise complementary 

network with contrastive learning (CCN-CL) model 

increased PSNR and SSIM by 12.8 and 5.6%, respectively, 

and reduced RMSE by 37.6% (Tang, 2022). Additionally, Li 

et al. previous studies on the multistage convolutional neural 

networks (MSCNN) model increased PSNR and SSIM by 

28.9 and 15.5%, respectively, demonstrating noise reduction 

(Li, 2022). Among previous studies on GAN based 

denoising models, Fu, Bo et al. found that the NGRNet 

model resulted in a PSNR increase 0.13 ㏈ (Fu, 2022). All 

AI models for low dose CT noise reduction showed good 

results, but some models showed an increase in 

computational load as the number of model layers increased. 

In this study, SRCNN based on model showed satisfactory 

denoising results with simple layers and low computational 

load. However, compared to previous studies, the SSIM was 

relatively lower, which is likely due to the insufficient 

computational capacity of the shallow layers. Therefore, 

further research with increased layers is necessary. 

Additionally, the images generated by the SRCNN model 

are visually similar to the label images, suggesting that if the 

AI model is applied with a reduced dose during CT scans, 

patient radiation exposure could also be reduced. 

 

 

5. Conclusions 
 

In this study confirmed that the application of the 

SRCNN model to low-dose chest CT images can improve 

image quality by reducing noise. AI based post processing 

could also be beneficial for CT images without AI 

application. 
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