References
- 2024 Data Breach Investigations Report | Verizon. (2024). https://www.verizon.com/business/resources/reports/dbir/
- Akinyelu, A. A., & Adewumi, A. O. (2014). Classification of Phishing Email Using Random Forest Machine Learning Technique. Journal of Applied Mathematics, 2014, 1-6. https://doi.org/10.1155/2014/425731
- Aliyah Salsabila, N., Ardhito Winatmoko, Y., Akbar Septiandri, A., & Jamal, A. (2018). Colloquial Indonesian Lexicon. 2018 International Conference on Asian Language Processing (IALP), 226-229. https://doi.org/10.1109/IALP.2018.8629151
- Anugerah Ayu, M., & Haris Muhendra, A. (2024). Preprocessing of Slang Words for Sentiment Analysis on Public Perceptions in Twitter. In J. Li (Ed.), Artificial Intelligence (Vol. 22). IntechOpen. https://doi.org/10.5772/intechopen.113725
- Bendovschi, A. (2015). Cyber-Attacks - Trends, Patterns and Security Countermeasures. Procedia Economics and Finance, 28, 24-31. https://doi.org/10.1016/S2212-5671(15)01077-1
- Cybellium. (2023). Mastering Email in the enterprise. Cybellium Ltd.
- Devi, K., & Ramaraj, R. R. (2015). A New Feature Selection Algorithm for Efficient Spam Filtering using Adaboost and Hashing Techniques. Indian Journal of Science and Technology, 8. https://doi.org/10.17485/ijst/2015/v8i13/65753
- Garcia, E. K., Feldman, S., Gupta, M. R., & Srivastava, S. (2010). Completely Lazy Learning. IEEE Transactions on Knowledge and Data Engineering, 22(9), 1274-1285. https://doi.org/10.1109/TKDE.2009.159
- Hayuningtyas, R. Y. (2017). Aplikasi Filtering of Spam Email Menggunakan Naive Bayes.
- Hoo, Z. H., Candlish, J., & Teare, D. (2017). What is an ROC curve? Emergency Medicine Journal, 34(6), 357-359. https://doi.org/10.1136/emermed-2017-206735
- Jiang, L., Wang, D., Cai, Z., & Yan, X. (2007). Survey of Improving Naive Bayes for Classification. In R. Alhajj, H. Gao, J. Li, X. Li, & O. R. Zaiane (Eds.), Advanced Data Mining and Applications (Vol. 4632, pp. 134-145). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73871-8_14
- John-Africa, E., & Emmah, V. T. (2022). Performance Evaluation of LSTM and RNN Models in the Detection of Email Spam Messages.
- Kaddoura, S., Chandrasekaran, G., Elena Popescu, D., & Duraisamy, J. H. (2022). A systematic literature review on spam content detection and classification. PeerJ Computer Science, 8, e830. https://doi.org/10.7717/peerj-cs.830
- Khomsah, S., & Aribowo, A. S. (2020). Model Text-Preprocessing Komentar Youtube Dalam Bahasa Indonesia. 4(4).
- Laksono, E. P. (2020). Optimization of K Value in KNN Algorithm for Spam and Ham Email Classification | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi). https://www.jurnal.iaii.or.id/index.php/RESTI/article/view/1845
- McCreadie, R. M. C., Macdonald, C., & Ounis, I. (2010). Crowdsourcing a News Query Classification Dataset.
- Om, K. (2017). Secure email gateway. 2017 IEEE International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), 49-53. https://doi.org/10.1109/ICSTM.2017.8089126
- Peta Ancaman Digital di Indonesia. (2024). https://map.awanpintar.id/
- Poesio, M., & Artstein, R. (2005). The reliability of anaphoric annotation, reconsidered: Taking ambiguity into account. Proceedings of the Workshop on Frontiers in Corpus Annotations II Pie in the Sky - CorpusAnno '05, 76-83. https://doi.org/10.3115/1608829.1608840
- Qaiser, S., & Ali, R. (2018). Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications, 181. https://doi.org/10.5120/ijca2018917395
- Raschka, S. (2015). Python Machine Learning. Packt Publishing Ltd.
- Rodan, A., Faris, H., & Alqatawna, J. (2016). Optimizing Feedforward Neural Networks Using Biogeography Based Optimization for E-Mail Spam Identification. International Journal of Communications, Network and System Sciences, 09(01), 19-28. https://doi.org/10.4236/ijcns.2016.91002
- Ruskanda, F. Z. (2019). Study on the Effect of Preprocessing Methods for Spam Email Detection. Indonesian Journal on Computing (Indo-JC), 4(1), 109. https://doi.org/10.21108/INDOJC.2019.4.1.284
- Sahria, Y., & Fudholi, D. H. (2020). Analysis of Health Research Topics in Indonesia Using the LDA (Latent Dirichlet Allocation) Topic Modeling Method | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi). https://jurnal.iaii.or.id/index.php/RESTI/article/view/1821
- Sanz, E. P., Gomez Hidalgo, J. M., & Cortizo Perez, J. C. (2008). Chapter 3 Email Spam Filtering. In Advances in Computers (Vol. 74, pp. 45-114). Elsevier. https://doi.org/10.1016/S0065-2458(08)00603-7
- Siddique, Z. B., Khan, M. A., Din, I. U., Almogren, A., Mohiuddin, I., & Nazir, S. (2021). Machine Learning-Based Detection of Spam Emails. Scientific Programming, 2021, 1-11. https://doi.org/10.1155/2021/6508784
- Sohan, S. M., Maurer, F., Anslow, C., & Robillard, M. P. (2017). A study of the effectiveness of usage examples in REST API documentation. 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 53-61. https://doi.org/10.1109/VLHCC.2017.8103450
- Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In A. Sattar & B. Kang (Eds.), AI 2006: Advances in Artificial Intelligence (Vol. 4304, pp. 1015-1021). Springer Berlin Heidelberg. https://doi.org/10.1007/11941439_114
- Vernanda, Y., Hansun, S., & Kristanda, M. B. (2020). Indonesian language email spam detection using N-gram and Naive Bayes algorithm. Bulletin of Electrical Engineering and Informatics, 9(5), 2012-2019. https://doi.org/10.11591/eei.v9i5.2444
- Wang, D., Irani, D., & Pu, C. (2014). Is Email Business Dying?: A Study on Evolution of Email Spam Over Fifteen Years. EAI Endorsed Transactions on Collaborative Computing, 1(1), e3. https://doi.org/10.4108/cc.1.1.e3
- Welnitzova, K., & Munkova, D. (2021). Sentence-structure errors of machine translation into Slovak. Topics in Linguistics, 22(1), 78-92. https://doi.org/10.2478/topling-2021-0006