DOI QR코드

DOI QR Code

네 면에 SiPM 광센서가 결합된 블록 섬광체를 사용한 고민감도 PET 검출기의 시뮬레이션을 통한 성능 평가

Performance Evaluation through Simulation of a High-Sensitivity PET Detector using Block Scintillator with SiPM Photosensors Attached to Four Sides

  • 안수정 (한국원자력안전기술원 비상대책단 환경방사능평가실) ;
  • 이승재 (동서대학교 방사선학과)
  • Su Jung An (Department of Environmental Radioactivity Assessment, Korea Institute of Nuclear Safety) ;
  • Seung-Jae Lee (Department of Radiological Science, Dongseo University)
  • 투고 : 2024.09.12
  • 심사 : 2024.11.30
  • 발행 : 2024.11.30

초록

전임상용 양전자방출단층촬영기기(positron emission tomography; PET)의 민감도를 향상시키기 위해 블록형 섬광체를 사용하고, 네 면에 광센서를 배치하여 검출기를 설계하였다. 설계한 검출기의 성능을 평가하기 위해 섬광체 내에서 빛의 이동과 산란, 흡수 등의 모사가 가능한 DETECT2000을 사용하였다. 모든 방향으로 3 mm 간격으로 감마선과 섬광체의 상호작용으로 생성되는 빛을 발생시켜, 광센서를 통해 빛의 신호를 획득하였다. 광센서에서 수집된 빛의 신호는 앵거 식을 통해 XY 평면 및 깊이 방향(Z축)에 대한 영상으로 재구성하였다. XY 평면 영상에서 감마선 이벤트 위치가 모두 분리되어 영상화된 것을 확인할 수 있었으며, 깊이 방향(Z축)에 대해서도 모든 위치에서 영상이 구분되어 나타나는 것을 확인할 수 있었다. 이는 고민감도를 위해 블록형 섬광체를 사용하여 검출기를 설계한 것이 반응 깊이 층까지 측정 가능함을 확인할 수 있는 결과이다. 본 검출기를 사용하여 전임상용 PET을 구성할 경우 민감도와 공간분해능을 모두 향상시킬 수 있을 것으로 판단된다.

To improve the sensitivity of preclinical positron emission tomography (PET), a detector was designed using a block scintillator and photosensors placed on four sides. To evaluate the performance of the designed detector, DETECT2000, which can simulate the movement, scattering, and absorption of light in the scintillator, was used. Light generated by the interaction of gamma rays and the scintillator was generated at 3 mm intervals in all directions, and light signals were obtained through the photosensors. The light signals collected from the photosensors were reconstructed into images for the XY plane and depth direction (Z axis) using the Anger equation. It was confirmed that all gamma-ray event locations were separated and imaged in the XY plane images, and it was confirmed that images were separate at all positions in the depth direction (Z axis). This result confirms that the detector designed using a block scintillator for high sensitivity can measure up to the interaction depth layer. It is expected that both sensitivity and spatial resolution can be improved if preclinical PET is configured using this detector.

키워드

참고문헌

  1. S. R. Cherry, Y. Shao, R. W. Silverman, K. Meadors, S. Siegel, A. Chatziioannou, J. W. Young, W. Jones, J. C. Moyers, D. Newport, A. Boutefnouchet, T. H. Farquhar, M. Andreaco, M. J. Paulus, D. M. Binkley, R. Nutt, M. E. Phelps, "MicroPET: a high resolution PET scanner for imaging small animals", IEEE Transactions on Nuclear Science, Vol. 44, No. 3, pp. 1161-1166, 1997. https://doi.org/10.1109/23.596981
  2. R. S. Miyaoka, S. G. Kohlmyer, T. K. Lewellen, "Performance Characteristics of Micro Crystal Element (MiCE) Detectors", IEEE Transactions on Nuclear Science, Vol. 48, No. 4, pp. 1403-1407, 2001. https://doi.org/10.1109/23.958366
  3. Y-C. Tai, A. F. Chatziioannou, Y. Yang, R. W. Silverman, K. Meadors, S. Siegel, D. F. Newport, J. R. Stickel, S. R. Cherry, "MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging", Physics in Medicine and Biology, Vol. 48, No. 11, pp. 1519-1537, 2003. https://doi.org/10.1088/0031-9155/48/11/303
  4. S. Yamamoto, H. Watabe, T. Watabe, H. Ikeda, Y. Kanai, Y. Ogata, K. Kato, J. Hatazawa, "Development of ultrahigh resolution Si-PM-based PET system using 0.32 mm pixel scintillators", Nuclear Instruments and Methods in Physics A, Vol. 836, pp. 7-12, 2016. https://doi.org/10.1016/j.nima.2016.08.045
  5. Y. Yang, J. Bec, J. Zhou, M. Zhang, M. S. Judenhofer, X. Bai, K. Di, Y. Wu, M. Rodriguez, P. Dokhale, K. S. Shah, R. Farrell, J. Qi, S. R. Cherry, "A Prototype High-Resolution Small-Animal PET Scanner Dedicated to Mouse Brain Imaging", Journal of Nuclear Medicine, Vol. 57, No. 7, pp. 1130-1135, 2016. https://doi.org/10.2967/jnumed.115.165886
  6. F. Godinez, K. Gong, J. Zhou, M. S. Judenhofer, A. J. Chaudhari, R. D. Badawi, "Development of an Ultra High Resolution PET Scanner for Imaging Rodent Paws: PawPET", IEEE Transactions on Radiation and Plasma Medical Sciences, Vol. 2, No. 1, pp. 7-16, 2018. https://doi.org/0.1109/TRPMS.2017.2765486 109/TRPMS.2017.2765486
  7. J. Seidel, J. J. Vaquero, S. Siegel, W. R. Gandler, M. V. Green, "Depth identification accuracy of a three layer phoswich PET detector module", IEEE Transactions on Nuclear Science, Vol. 46, No. 3, pp. 485-490, 1999. https://doi.org/10.1109/23.775567
  8. H. Liu, T. Omura, M. Watanabe, T. Yamashita, "Development of a depth of interaction detector for γ-rays", Nuclear Instruments and Methods in Physics A, Vol. 459, No. 1-2, pp. 182-190, 2001. https://doi.org/10.1016/S0168-9002(00)00939-6
  9. T. Tsuda, H. Murayama, K. Kitamura, T. Yamaya, E. Yoshida, T. Omura, H. Kawai, N. Inadama, N. Orita, "A four-Layer depth of interaction detector block for small animal PET", IEEE Transactions on Nuclear Science, Vol. 51, No. 5, pp. 2537-2542, 2004. https://doi.org/10.1109/TNS.2004.835739
  10. S-J. Lee, C. Lee, J. Kang, Y. H. Chung, "A new DOI detector design using discrete crystal array with depth-dependent reflector patterns and single-ended readout", Nuclear Instruments and Methods in Physics A, Vol. 843, pp. 1-4, 2017. https://doi.org/10.1016/j.nima.2016.10.052
  11. Y. Shao, R. W. Silverman, R. Farrell, L. Cirignano, R. Grazioso, K. S. Shah, G. Vissel, M. Clajus, T. O. Tumer, S. R. Cherry, "Design studies of a high resolution PET detector using APD arrays", IEEE Transactions on Nuclear Science, Vol. 47, No. 3, pp. 1051-1057, 2000. https://doi.org/0.1109/23.856546 109/23.856546
  12. Y. Shao, H. Li, K. Gao, "Initial experimental studies of using solid-state photomultiplier for PET applications", Nuclear Instruments and Methods in Physics A, Vol. 580, No. 2, pp. 944-950, 2007. https://doi.org/10.1016/j.nima.2007.06.053
  13. C. S. Levin, "Design of a high-resolution and high-sensitivity scintillation crystal array for PET with nearly complete light collection", IEEE Transactions on Nuclear Science, Vol. 49, No. 5, pp. 2236-2243, 2002. https://doi.org/0.1109/TNS.2002.803870 109/TNS.2002.803870
  14. A. Vandenbroucke, A. M. K. Foudray, P. D. Olcott, C. S. Levin, "Performance characterization of a new high resolution PET scintillation detector", Physics in Medicine and Biology, Vol. 55, No. 19, pp. 5895-5911, 2010. https://doi.org/10.1088/0031-9155/55/19/018
  15. Y. H. Chung, C. H. Baek, S. J. Lee, K. J. Hong, J. H. Kang, Y. Choi, "Preliminary experimental results of a quasi-monolithic detector with DOI capability for a small animal PET", Nuclear Instruments and Methods in Physics A, Vol. 621, No. 1-3, pp. 590-594, 2010. https://doi.org/10.1016/j.nima.2010.04.039
  16. S. J. Lee, C. H. Baek, "Development of Sensitivity-Enhanced Detector using Pixelization of Block Scintillator with 3D Laser Engraving", Journal of the Korean Society of Radiology, Vol. 13, No. 2, pp. 313-318, 2019. https://doi.org/10.7742/jksr.2019.13.2.313
  17. B. Jo, S. J. Lee, "Design for a depth of interaction detector for small animal PET using multiple quasi-block scintillators", Journal of the Korean Physical Society, Vol. 85, pp. 448-455, 2024. https://doi.org/10.1007/s40042-024-01119-2
  18. T. Ling, T. K. Lewellen, R. S. Miyaoka, "Depth of interaction decoding of a continuous crystal detector module", Physics in Medicine and Biology, Vol. 52, No. 8, pp. 2213-2228, 2007. https://doi.org/0.1088/0031-9155/52/8/012 1088/0031-9155/52/8/012
  19. F. Cayouette, D. Laurendeau, C. Moisan, "DETECT2000: an improved Monte-Carlo simulator for the computer aided design of photon sensing devices", Proceedings of SPIE, Quebec, Vol. 4833, pp. 69-76, 2003. https://doi.org/10.1117/12.474315
  20. F. Cayouette, C. Moisan, N. Zhang, C. J. Thompson, "Monte Carlo Modeling of Scintillator Crystal Performance for Stratified PET Detectors With DETECT2000", IEEE Transactions on Nuclear Science, Vol. 49, No. 3, pp. 624-628, 2002. https://doi.org/10.1109/TNS.2002.1039539
  21. S-J. Lee, "Design of a Depth Encoding Detector using Light Guides with Different Reflector Patterns for Each Layer", Journal of the Korean Society of Radiology, Vol. 17, No. 1, pp. 31-36, 2023. https://doi.org/10.7742/jksr.2023.17.1.31
  22. S. J. Lee, "DOI Detector Design using Different Sized Scintillators in Each Layer", Journal of the Korean Society of Radiology, Vol. 17, No. 1, pp. 11-16, 2023. https://doi.org/10.7742/jksr.2023.17.1.11
  23. S-J. Lee, B. Jo, "Design of Small-sized Scintillation Pixel Detector with a Light Guide made of the Same Material as the Scintillation Pixel", Journal of the Korean Society of Radiology, Vol. 17, No. 4, pp. 523-529, 2024. https://doi.org/10.7742/jksr.2023.17.4.523
  24. GAGG(Ce) Crystal, Efficient, Professional Intelligent, Customer-oriented, From URL; https://www.epic-crystal.com/oxide-scintillators/gagg-ce-scintillator.html
  25. MPPC(Multi-Pixel Photon Counter) S14160/S14161 series, HAMAMATSU, 2020. From URL; https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s14160_s14161_series_kapd1064e.pdf