Acknowledgement
본 연구는 대전보건대학교 전문기술 석사 연구비 지원으로 수행되었습니다.
References
- Y. I. Cho, J. H. Kim, "Evaluation of the Effectiveness of 3D Printing Shielding Devices using Monte Carlo Simulation in Plain Radiography", Journal of the Korean Society of Radiology, Vol. 14, No. 3, pp. 303-311, 2020. https://doi.org/10.7742/JKSR.2020.14.3.303
- Korea Disease Control and Prevention Agency, "Guidelines for Recommended Patient Doses for Plain Radiography Imaging", Radiation Safety Management Series, No. 30, 2012.
- S. Y. Lee, Y. H. Seoung, "Evaluation of Effective Dose with National Diagnostic Reference Level using Monte-Carlo Simulation", Journal of the Korean Society of Radiology, Vol. 15, No. 7, pp. 1041-1047, 2021. https://doi.org/10.7742/JKSR.2021.15.7.1041
- K. P. Kim, "Assessment of Radiation Exposure of Korean Population by medical radiation", Korea Disease Control and Prevention Agency, 2020.
- ICRP, "Radiological Protection in Medicine", International Commission on Radiological Protection, ICRP pulication 105, 2007.
- H. A. A. B. Mraity, L. Walton, A. England, J. Thompson, L. Lanca, P. Hogg, "Can the anode heel effect be used to optimise radiation dose and image quality for AP pelvis radiography?", Radiography, Vol. 26, No. 2, pp. e103-e108, 2020. https://doi.org/10.1016/j.radi.2019.11.094
- H. M. Warren-Forward, R. Beckhaus, "A Standardised Approach to Optimisation", Radiographer, Vol. 51, No. 3, pp. 105-110, 2004. https://doi.org/10.1002/j.2051-3909.2004.tb00007.x
- E. H. Kim, K. Muroi, T. Koike, J. M. Kim, "Dose Reduction and Image Quality Optimization of Pediatric Chest Radiography Using a Tungsten Filter", Bioengineering, Vol. 9, No. 10, pp. 583, 2022. http://dx.doi.org/10.3390/bioengineering9100583
- A. A. Borkowski, N. A. Viswanadhan, L. B. Thomas, R. D. Guzman, L. A. Deland, S. M. Mastorides, "Using Artificial Intelligence for COVID-19 Chest X-ray Diagnosis", Federal Practitioner, Vol. 37, No. 9, pp. 398-404, 2020. http://dx.doi.org/10.12788/fp.0045
- G. H. Kim, R. N. Lee, "Effect of target angle and thickness on the heel effect and X-ray intensity characteristics for 70 kV X-ray tube target", Progress in Medical Physics, Vol. 27, No. 4, pp. 272-276, 2016. https://doi.org/10.14316/pmp.2016.27.4.272
- M. W. Kusk, J. M. Jensen, E. H. Gram, J. Nielsen, H. Precht, "Anode heel effect: Does it impact image quality in digital radiography? A systematic literature review", Radiography, Vol. 27, No. 3, pp. 976-981, 2021. https://doi.org/10.1016/j.radi.2021.02.014
- N. N. Ratini, I. M. Yuliara, W. Windaryoto, "Anode Heel Effect Application with Step Wedge Against Effect of Signal to Noise Ratio in Computed Radiography", International Journal of Health Sciences, Vol. 4, No. 3, pp. 75-82, 2020. https://doi.org/10.29332/ijhs.v4n3.467
- K. J. Jang, N. H. Kim, J. H. Lee, S. B. Lee, "Distribution of X-ray Strength in Exposure Field Caused by Heel Effect", Journal of the Korean Society of Radiology, Vol. 5, No. 5, pp. 223-229, 2011. https://doi.org/10.7742/JKSR.2011.5.5.223
- L. Lanca, A. Silva, "Digital radiography detectors - A technical overview: Part 2", Radiography, Vol. 15, No. 2, pp. 134-138, 2009. https://doi.org/10.1016/j.radi.2008.02.005
- Korea Disease Control and Prevention Agency, "Diagnostic Reference Level Guidelines for General X-ray Part", Medical Radiation Series, No. 28, 2023.
- J. M. Boone, J. A. Seibert, "An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV", Medical Physics, Vol. 24, No. 11, pp. 1661-1804, 1997. https://doi.org/10.1118/1.597953
- S. Evans, "Catalogue of Diagnostic X-Ray Spectra and Other Data(CD-ROM REVIEW)", Journal of Radiological Protection, Vol. 18, No. 1, pp. 206, 1998. https://doi.org/10.1088/0952-4746/18/1/026
- T. Mearon, P. C. Brennan, "Anode heel affect in thoracic radiology: a visual grading analysis", Physics of Medical Imaging, Vol. 6142, pp. 1148-1156, 2006. https://doi.org/10.1117/12.641623