DOI QR코드

DOI QR Code

Analysis of X-ray Tube Alignment by Diagnostic Voltages Considering Anode Heel Effect(AHE): A Simulation Study

진단용 관전압 범위에서 양극 경사효과를 고려한 엑스선관 배열분석: 시뮬레이션 연구

  • Young-Seok Ji (Department of Radiology, Seoul National University Bundang Hosipital) ;
  • Jae-Seok Kim (Department of Radiology, Daejeon Health University)
  • 지영석 (분당서울대학교병원 영상의학과) ;
  • 김재석 (대전보건대학교 방사선학과)
  • Received : 2024.10.30
  • Accepted : 2024.11.30
  • Published : 2024.11.30

Abstract

Although radiation equipment are developing rapidly, general research on fundamental physics approaches is relatively lacking. Therefore, this study aims to analyze the energy difference of Anode Heel Effect(AHE) based on the tube voltages range of 50 kVp to 125 kVp of X-ray tube, and ultimately suggest an appropriate tube alignment for general radiography that can be used clinically. The radiation simulation was performed using the MCNP(Monte Carlo N-Particle), and the X-ray tube was modeled as E7869X(Japan) used in stationary X-ray equipment(Samsung GC58A). The tube voltages used in this study were 50, 65, 80, 95, 110, and 125 kVp, and the photon spectrum was analyzed to compare trends using MCNP and TASMIP(Tungsten Anode Spectral Model Interpolating Polynomials), and the AHE analysis was calculated into 1,849 sections consisting of 1 cm2. Comparisons between the anode and the cathode side photon values of 50 kVp(0.1%), 65 kVp(9.1%), 80 kVp(16.5%), 95 kVp(16.3%), 110 kVp(20.6%), and 125 kVp(28.1%). Therefore, based on these findings, it is determined that the tube range requiring consideration of the AHE is 80, 95, 110, and 125 kVp, while for 50 and 65 kVp, AHE consideration is deemed unnecessary.

진단용 방사선장비는 급속도로 발전하여 많은 연구들이 이뤄지고 있지만, 기본적인 물리학 접근의 방사선장비 연구는 상대적으로 부족한 실정이다. 따라서 본 연구에서는 50 kVp부터 125 kVp까지 임상에서 사용하는 관전압 범위를 기준으로 양극경사효과(Anode Heel Effect)의 에너지 차이를 분석하고, 임상에서 사용하는 일반촬영검사에 적합한 엑스선 튜브 정렬을 제안하는 것을 목적으로 한다. 방사선 시뮬레이션은 MCNP (Monte Carlo N-Particle, USA)를 사용하였으며, 엑스선관은 GC85A (Samsung, Korea) 장비에서 사용하는 E7869X의 도면을 통해 모사하였다. 본 연구에서 사용한 관전압은 50, 65, 80, 95, 110, 125 kVp였으며, 광자 스펙트럼은 MCNP와 TASMIP(Tungsten Anode Spectral Model Interpolating Polynomials)를 활용하여 경향성을 비교하였고, AHE는 1 cm2로 구성된 1,849 가지 구역을 선정하여 세부적 분석을 진행하였다. 양극과 음극 측 광자 획득 비율은 50 kVp (0.1%), 65 kVp (9.1%), 80 kVp (16.5%), 95 kVp (16.3%), 110 kVp (20.6%), 125 kVp (28.1%)로 산출되었다. 따라서 AHE를 고려해야 하는 관전압 범위는 80, 95, 110, 125 kVp이며, 50, 65 kVp는 AHE를 고려하지 않아도 무방하다고 판단한다.

Keywords

Acknowledgement

본 연구는 대전보건대학교 전문기술 석사 연구비 지원으로 수행되었습니다.

References

  1. Y. I. Cho, J. H. Kim, "Evaluation of the Effectiveness of 3D Printing Shielding Devices using Monte Carlo Simulation in Plain Radiography", Journal of the Korean Society of Radiology, Vol. 14, No. 3, pp. 303-311, 2020. https://doi.org/10.7742/JKSR.2020.14.3.303
  2. Korea Disease Control and Prevention Agency, "Guidelines for Recommended Patient Doses for Plain Radiography Imaging", Radiation Safety Management Series, No. 30, 2012.
  3. S. Y. Lee, Y. H. Seoung, "Evaluation of Effective Dose with National Diagnostic Reference Level using Monte-Carlo Simulation", Journal of the Korean Society of Radiology, Vol. 15, No. 7, pp. 1041-1047, 2021. https://doi.org/10.7742/JKSR.2021.15.7.1041
  4. K. P. Kim, "Assessment of Radiation Exposure of Korean Population by medical radiation", Korea Disease Control and Prevention Agency, 2020.
  5. ICRP, "Radiological Protection in Medicine", International Commission on Radiological Protection, ICRP pulication 105, 2007.
  6. H. A. A. B. Mraity, L. Walton, A. England, J. Thompson, L. Lanca, P. Hogg, "Can the anode heel effect be used to optimise radiation dose and image quality for AP pelvis radiography?", Radiography, Vol. 26, No. 2, pp. e103-e108, 2020. https://doi.org/10.1016/j.radi.2019.11.094
  7. H. M. Warren-Forward, R. Beckhaus, "A Standardised Approach to Optimisation", Radiographer, Vol. 51, No. 3, pp. 105-110, 2004. https://doi.org/10.1002/j.2051-3909.2004.tb00007.x
  8. E. H. Kim, K. Muroi, T. Koike, J. M. Kim, "Dose Reduction and Image Quality Optimization of Pediatric Chest Radiography Using a Tungsten Filter", Bioengineering, Vol. 9, No. 10, pp. 583, 2022. http://dx.doi.org/10.3390/bioengineering9100583
  9. A. A. Borkowski, N. A. Viswanadhan, L. B. Thomas, R. D. Guzman, L. A. Deland, S. M. Mastorides, "Using Artificial Intelligence for COVID-19 Chest X-ray Diagnosis", Federal Practitioner, Vol. 37, No. 9, pp. 398-404, 2020. http://dx.doi.org/10.12788/fp.0045
  10. G. H. Kim, R. N. Lee, "Effect of target angle and thickness on the heel effect and X-ray intensity characteristics for 70 kV X-ray tube target", Progress in Medical Physics, Vol. 27, No. 4, pp. 272-276, 2016. https://doi.org/10.14316/pmp.2016.27.4.272
  11. M. W. Kusk, J. M. Jensen, E. H. Gram, J. Nielsen, H. Precht, "Anode heel effect: Does it impact image quality in digital radiography? A systematic literature review", Radiography, Vol. 27, No. 3, pp. 976-981, 2021. https://doi.org/10.1016/j.radi.2021.02.014
  12. N. N. Ratini, I. M. Yuliara, W. Windaryoto, "Anode Heel Effect Application with Step Wedge Against Effect of Signal to Noise Ratio in Computed Radiography", International Journal of Health Sciences, Vol. 4, No. 3, pp. 75-82, 2020. https://doi.org/10.29332/ijhs.v4n3.467
  13. K. J. Jang, N. H. Kim, J. H. Lee, S. B. Lee, "Distribution of X-ray Strength in Exposure Field Caused by Heel Effect", Journal of the Korean Society of Radiology, Vol. 5, No. 5, pp. 223-229, 2011. https://doi.org/10.7742/JKSR.2011.5.5.223
  14. L. Lanca, A. Silva, "Digital radiography detectors - A technical overview: Part 2", Radiography, Vol. 15, No. 2, pp. 134-138, 2009. https://doi.org/10.1016/j.radi.2008.02.005
  15. Korea Disease Control and Prevention Agency, "Diagnostic Reference Level Guidelines for General X-ray Part", Medical Radiation Series, No. 28, 2023.
  16. J. M. Boone, J. A. Seibert, "An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV", Medical Physics, Vol. 24, No. 11, pp. 1661-1804, 1997. https://doi.org/10.1118/1.597953
  17. S. Evans, "Catalogue of Diagnostic X-Ray Spectra and Other Data(CD-ROM REVIEW)", Journal of Radiological Protection, Vol. 18, No. 1, pp. 206, 1998. https://doi.org/10.1088/0952-4746/18/1/026
  18. T. Mearon, P. C. Brennan, "Anode heel affect in thoracic radiology: a visual grading analysis", Physics of Medical Imaging, Vol. 6142, pp. 1148-1156, 2006. https://doi.org/10.1117/12.641623