DOI QR코드

DOI QR Code

Analysis of Activation Characteristics of Cyclotron Operating Facility by Concrete Type

사이클로트론 운영 시설의 콘크리트 종류에 따른 방사화 특성 분석

  • Yong-In Cho (Department of Radiological Science, Catholic University of Pusan) ;
  • Sang-Il Bae (Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences Cancer Center)
  • 조용인 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 배상일 (동남권원자력의학원 방사선종양학과)
  • Received : 2024.10.23
  • Accepted : 2023.11.30
  • Published : 2024.11.30

Abstract

Medical cyclotrons accelerate protons at high speeds to produce nuclear reactions for the production of radiopharmaceuticals. During this nuclear reaction, high-energy gamma rays and many neutrons are generated. However, it is reported that if exposed to the generated neutrons for a long period of time, the cyclotron accessories and shielding concrete will become radioactive and generate a large amount of radioactive waste when the facility is dismantled. Accordingly, this study aims to evaluate the radioactivity characteristics of different types of concrete used as shielding walls in cyclotron operating facilities. The experiment simulated GE's PETtrace 800 model and five types of concrete shielding walls using the FLUKA code based on Monte Carlo simulation. The simulated cyclotron was evaluated for its source term based on the manufacturer's standards, and the neutron fluence was evaluated according to the type of concrete shielding wall when the cyclotron was in operation. Afterwards, the sum of the radionuclides produced according to the type of concrete and the fraction of radionuclides produced according to the domestic radioactive waste disposal standards were analyzed. As a result, the reliability of the source term evaluation was secured with an error of less than 3%. The distribution of neutron fluence generated depending on the type of concrete when operating the cyclotron showed the highest result at the point of 0.02 eV. As a result of evaluating radionuclides generated depending on the type of concrete, concrete with high iron content tended to generate 54Mn, and concrete with high oxygen content tended to generate 60Co and 152Eu. As a result of analyzing radioactivity characteristics according to the thickness of each type of concrete, concrete with high iron content showed a value below the allowable self-disposal concentration at 50 cm thick, and concrete with high oxygen content showed a value exceeding the allowable self-disposal concentration at 50 cm thick. It is believed that this study can be used as auxiliary data for preliminary radiological evaluation of concrete shielding walls when dismantling a cyclotron.

의료용 사이클로트론은 방사성의약품 생산을 위해 양성자를 고속으로 가속하여 핵반응을 일으킨다. 이러한 핵반응 과정에서 고에너지의 감마선과 다수의 중성자가 발생한다. 이러한 중성자에 의해 장기간 노출될 경우, 사이클로트론 부속품 및 차폐 콘크리트가 방사화되어 시설 해체 시 다량의 방사성폐기물을 발생시킬 것으로 보고되고 있다. 이에 본 연구에서는 사이클로트론 운영 시설 내 차폐벽으로 사용되는 콘크리트의 종류에 따른 방사화 특성을 평가하고자 한다. 실험은 몬테카를로 전산모사 기반의 FLUKA 코드를 이용하여 GE사의 PETtrace 800 모델과 5종류의 콘크리트 차폐벽을 모사하였다. 전산모사 된 사이클로트론은 제조사 기준에 근거하여 선원항을 평가하였고, 사이클로트론 가동 시 콘크리트 차폐벽 종류에 따른 중성자 선속 분포를 평가하였다. 이후 콘크리트 종류에 따라 생성되는 방사성핵종과 국내 방사성폐기물 자체처분 기준에 따른 생성 핵종 분율의 합을 분석하였다. 그 결과, 선원항 평가는 3% 이내의 오차로 신뢰성을 확보하였다. 사이클로트론 가동 시 콘크리트 종류에 따라 생성되는 중성자 선속 분포는 0.02 eV 지점에서 가장 높은 결과를 보였다. 콘크리트 종류에 따라 생성되는 방사화 핵종 평가 결과, 철 함유량이 높은 콘크리트는 54Mn, 산소 함유량이 높은 콘크리트는 60Co, 152Eu 핵종이 높게 생성되는 경향을 보였다. 콘크리트 종류별 두께에 따른 방사화 특성 분석 결과, 철 함유량이 높은 콘크리트는 50 cm 두께에서 자체처분 허용농도 미만의 값을 보였고, 산소 함유량이 높은 콘크리트는 50 cm 두께에서 자체처분 허용농도를 초과하는 값을 나타내었다. 본 연구를 통해 사이클로트론 해체 시 콘크리트 차폐벽의 예비 방사화 평가에 대한 보조자료로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2024년도 부산가톨릭대학교 교내연구비에 의하여 연구되었음

References

  1. S. Y. Hwang, Y. J. Kim, S. W. Lee, "Evaluation of residual radioactivity and dose rate of a target assembly in an IBA cyclotron", Journal of Radiological Science and Technology, Vol. 39, No. 4, pp. 643-649, 2016. http://dx.doi.org/10.17946/JRST.2016.39.4.22
  2. D. G. Jang, S. S. Kang, C. S. Kim, J. H. Kim, "Analysis of Air Activation in PET Cyclotron Facility", Journal of the Korean Society of Radiology, Vol. 10, No. 7, pp. 489-494. 2016. http://dx.doi.org/10.7742/jksr.2016.10.7.489
  3. Cyclotrons used for Radionuclide Production Accelerator Knowledge Portal, IAEA Accelerator Knowledge Portal, From URL; https://nucleus.iaea.org/sites/accelerators/Pages/Cyclotron.aspx
  4. D. G. Jang, D. H. Kim, "A Study of Targetry Activation and Dose Analysis of PET Cyclotron Using Monte Carlo Simulation", Journal of the Korean Society of Radiology, Vol. 12, No. 5, pp. 565-573, 2018. http://dx.doi.org/10.7742/jksr.2018.12.5.565
  5. D. G. Jang, S. S. Shin, "Radiological Impact Assessment for Radioactive Concrete in Dismantling of the Medical Cyclotron", Journal of the Korean Society of Radiology, Vol. 13, No. 1, pp. 73-80, 2019. http://dx.doi.org/10.7742/jksr.2019.13.1.73
  6. B. N. Lee, J. S. Lee, J. Y. Min, J. H. Lee, "Development of Low-activation Cement for Decreasing the Activated Waste in Nuclear Power Plant", Journal of the Korean Recycled Construction Resources Institute, Vol. 5. No. 3, pp. 223-229, 2017. https://doi.org/10.14190/JRCR.2017.5.3.223
  7. R. N. Woo, Y. M. Kim, M. C. Song, D. H. Cho, J. S. Lee, W. T. Kim, "A study on the adoption of cyclotron decommissioning plan criteria by the analysis of domestic relocation and abroad dismantling practices", Journal of Radiation Protection and Research, Vol. 38, No. 2, pp. 91-99, 2013. http://dx.doi.org/10.14407/jrp.2013.38.2.091
  8. R. N. Woo, Y. M. Kim, "A Study on the Method of Cost Estimation for the Decommissioning Plan by the Analysis of Domestic Cyclotron Dismantling Practices", Journal of the Korean Society of Radiology, Vol. 8, No. 3, pp. 97-103. 2014.
  9. C. W. Oh, "A Study on the Radiation Characteristics of Long-Term Linear Accelerators by Decommissioning Components Using FLUKA Monte Carlo Simulation", Pukyong National University, Doctor of engineering, 2023.
  10. PETtraceTM 800 cyclotron series, From URL; https://www.gehealthcare.com/-/jssmedia/feature/gehc/products/cyclotrons/pt800-cyclotron-system-data-sheet-rev6.pdf?rev=-1&srsltid=AfmBOorRCClYM9PU47RaBnjxrl-FMDwFfZMHzxaKIghWdtD5UvQ2mfMh
  11. R. S. Detwiler, R. J. McConn, T. F. Grimes, S. A. Upton, E. J. Engel, "Compendium of Material Composition Data for Radiation Transport Modeling", Richland, WA: Pacific Northwest National Laboratory, 2021.
  12. H. S. Lee, "Final Report on Development of Domestic Cyclotron Safety Assessment-Based Dismantling/ Disposal Procedures", Nuclear Safety and Security Commission, R&D/1603005, 2018.
  13. Nuclear Safety and Security Commission Notice, Regulations on classification and self-disposal standards for radioactive waste, 2023-No.7, 2023.
  14. S.T Abdulrahman, Z. Ahmad, S. Thomas et al., Micro and Nanostructured Composite Materials for Neutron Shielding Applications, Woodhead Publishing Series in Composites Science and Engineering, pp. 1-23, 2020.
  15. D. G. Jang, D. Y. Lee, J. H. Kim, "Radioactivation analysis of concrete shielding wall of cyclotron room using Monte Carlo simulation", Journal of the Korean Society of Radiology, Vol. 11, No. 5, pp. 335-341. 2017. http://dx.doi.org/10.7742/jksr.2017.11.5.335