
International Journal of Internet, Broadcasting and Communication Vol. 16 No.4 460-465 (2024)

http://dx.doi.org/10.7236/IJIBC.2024.16.4.460

Copyright© 2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Modeling with Design Patterns in MongoDB for Public Transportation Data

Meekyung Min

Professor, Dept. of Software, Seokyeong University, Seoul, Korea

mkmin@skuniv.ac.kr

Abstract

MongoDB, a document-based database, is suitable for distributed management environments of large-scale

databases due to its high scalability, performance, and flexibility. Recently, as MongoDB has been widely used

as a new database, many studies have been conducted including data modeling for MongoDB and studies on

applying MongoDB to various applications. In this paper, we propose a data modeling method for implementing

Seoul public transportation data with MongoDB. Seoul public transportation data is public data provided by the

Korea Public Data Portal. In this study, we analyze the target data and find design patterns such as polymorphic

pattern, subset pattern, computed pattern, and extended reference pattern in the data. Then, we present data

modeling with these patterns. We also show examples of implementation of Seoul public transportation database

in MongoDB. The proposed modeling method can improve database performance by leveraging the flexibility

and scalability that are characteristics of MongoDB.

Keywords: Data Modeling, MongoDB, Korea Public Data Portal, Seoul Public Transportation Data, Design Pattern

1. INTRODUCTION

It is difficult to implement applications for very big data with relational database systems. A new database

called NoSQL provides high scalability and flexibility in a distributed management environment of a large

database. Among NoSQL databases, MongoDB, a document-oriented database, is widely used [1]. This is

because MongoDB satisfies large-scale distributed databases, high availability, performance, and scalability,

while also performing well the query functions for data manipulation used in relational databases. There has

been a lot of research done on MongoDB. These include studies on migrating relational DBs to MongoDB [2-

4] and studies on schema and modeling [5, 6].

The document data model is inherently flexible, allowing the data model to support application requirements

well. This flexibility can lead to unnecessary complexity in the schema. Schema design requires consideration

of simplicity as well as performance and scalability. In order to establish a schema design method that works

well in MongoDB, twelve design patterns were presented in the article [7]. This method improves the

performance of the database while maintaining scalability and simplicity. This paper presents the process of

modeling Seoul public transportation data using these design patterns.

The Korea Public Data Portal is an integrated window that provides public data created or acquired and

managed by government agencies in accordance with the government's public data opening policy [8]. The

contents include various fields such as transportation, health, real estate, and medical care. The public data

portal DB accumulates a huge amount of data and provides it to users in the form of CSV, JSON files, and

open API [8]. This study targets Seoul public transportation data. Thousands of data are input from card readers

IJIBC 24-4-50

Manuscript Received: October. 25, 2024 / Revised: November. 1, 2024 / Accepted: November. 6, 2024

Corresponding Author: mkmin@skuniv.ac.kr

Tel: +82-2-940-7750, Fax: +82-2-919-0345

*Professor, Department of Software, Seokyeong University, Seoul, Korea

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 460-465 (2024) 461

and sensors in the subway stations and buses every day, so a database like MongoDB that process big data is

suitable for this large data. In addition, when analyzing the nature of the transportation data, a denormalized

data model is more suitable than a normalized relational data model.

In this paper, we propose a data modeling with design patterns for implementing database in MongoDB.

Among the twelve design patterns in [7], we model data using four design patterns that are suitable for the

public transportation data. In section 2, we summarize the Seoul public transportation data of the Korea Public

Data Portal. In section 3, we show the process of modeling data in MongoDB with the design patterns. In

section 4, we discuss the results of the modeling and the direction of further research.

2. SEOUL PUBLIC TRANSPORTATION DATA

Table 1 summarizes Seoul public transportation data in the Korea Public Data Portal. [8, 9]. The format is

file (CSV, JSON) and API. Table 1 mainly lists the data required for the pattern-oriented modeling presented

in this paper. The data in the Seoul public transportation database are categorized into subway station

information, train operation information, subway passenger statistics and bus information. Bus data mainly

consists of bus passenger information and bus operation information.

Table 1. Seoul Public Transportation Data in Public Data Portal

3. MODELING WITH DESIGN PATTERNS

In this section, we analyze the public transportation data in Table 1 to find design patterns. As a result of

analyzing the data, we found the polymorphic pattern, subset pattern, computed pattern, and extended reference

pattern among the design patterns suggested in [7]. We explain the modeling process using these patterns and

show examples of collections and documents implemented in MongoDB.

3.1 Polymorphic Pattern

A polymorphic pattern means that documents in a collection are similar but not identical. For example,

information on subway passengers contains statistics on the number of passengers. The types of passengers

can be divided into full-fare passengers and free-fare passengers. These two types mainly have common

Data Category

Subway station information, Station address and phone number,

Subway lines information, Transit information, Entrance information,

Elevator location, Station facilities,

Etc.

Subway Station

Information

Number of passengers (by line, station, hour, day, month, year),

Number of transit passengers (by station, year …),

Number of free-fare / full-fare passengers (hour, day, month …),

Number of tickets (by type), Ranking statistics of passengers,

Etc.

Passenger

Statistics

Train operation schedule, First/last train information

Train arrival information, Train location information, Train time table,

Etc.

Train Operations

Bus line Information, Bus station coordinates,

Number of passengers (by station, bus number, hour…),

Number of passengers of origin and destination station, Bus location,

Number of transit passengers (by hour, by passenger type),

Etc.

Bus information

462 Modeling with Design Patterns in MongoDB for Public Transportation Data

information and store slightly different information depending on the type. These are polymorphic patterns. In

this case, documents are stored in one Passengers collection without having to create two separate collections.

Since we don't separate the two types of passenger collections, we can speed up when queries are performed

on all passengers. This means that we can leverage the flexibility of MongoDB to improve performance.

Figure 1 shows an example of modeling with a polymorphic pattern. Fig. 1(a), (b), and (c) are part of screen

captures of MongoDB Compass, respectively. Fig. 1(a) is a document showing the total number of passengers

getting on and off at City Hall Station by hour. Fig. 1(b) shows the number of elderly free-fare passengers

getting on and off at City Hall Station by day. Instead of separating the data into two collections Fig. 1(a) and

Fig. 1(b), we can model it as a single Passengers Collection, as in Fig. 1(c). In Fig. 1(c), by using the “type”

attribute, we modeled two types of documents as a single collection. There are many similar polymorphic

pattern cases in Seoul public transportation data.

Another example is subway information and bus information. Both of them have common information such

as date, station id, station name, number of passengers, etc. And they have some different information. If there

are many query requests to search subways and buses at once, it would be efficient to model them as a single

collection. However, from analyzing the transportation data, we can see that subway data and bus data are

Figure 1. Modeling with Polymorphic Pattern

(c) Passengers

(a)

(b)

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 460-465 (2024) 463

usually queried separately. Therefore, in this case, we do not model them as a polymorphic pattern.

3.2 Subset Pattern

The subset pattern is used to increase speed when the entire large document cannot be loaded into the main

memory at once. The Seoul public transportation database contains a large amount of train operation

information. It provides real-time train operation times for each station. If this large amount of train operation

information were stored together with the station information, it would be too large to load into main memory.

Therefore, we split the train operation information for each station into the SubwayStation collection and the

TrainOperation collection. The SubwayStation collection only has the most frequently used information:

information about the next train, the first train, and the last train. Since past train operation history is not of

much use, the entire train operation information is stored separately in the TrainOperation collection. This is

shown in Figure 2.

.

.

Another example is about passenger statistics. Each station records the number of passengers getting on and

off every hour. This number accumulates over time and becomes very large. Therefore, the SubwayStation

collection is designed to contain only the data that is frequently used in queries, and Passengers collection

stores detailed hourly data. SubwayStation may only store passenger statistics for a period of one week or one

month, for example. As shown in Figure 1 in Section 3.1, the detailed passenger numbers by hour are in the

Passengers collection.

3.3 Computed Pattern

Computed patterns are used when modeling data that is computed repeatedly. The computed values of

attributes that are repeatedly used in queries are stored instead of being recalculated each time. The purpose is

. . . .

.

. . .

Figure 2. Modeling with Subset Pattern

SubwayStation TrainOperation

Document

464 Modeling with Design Patterns in MongoDB for Public Transportation Data

to eliminate the overhead of repeating computation every time a query occurs and to increase speed. Computed

patterns are efficient when used on low-write and read-intensive data. There are many statistical and

computational values in the public transportation database of this study. Among them, some major data are as

shown in Table 2. The table shows the update frequency and write intensity for each data. Since read intensity

varies depending on the application, it cannot be determined by the open data alone. Low-write attributes can

be considered as read-intensive attributes with relatively many reads, so they are modeled as computed patterns.

An example of a computed pattern is in Passengers in Figure 1 in Section 3.1. It is in the “free-fare passenger”

type in the Passengers document. The “get-on” and “get-off” values of free-fare passenger are values

computed on daily basis.

Table 2. Computed Patterns

Data Update Frequency Write intensity Computed pattern

Number of boarding passengers (by station, day)

Number of alighting passengers (by station, day)

Number of free-fare passengers (by station, month)

Number of free-fare boarding passengers (by station, day)

Number of free-fare alighting passengers (by station, day)

Number of boarding passengers (by station, ticket reader)

Number of alighting passengers (by station, ticket reader)

once/day

once/day

once/month

once/day

once/day

-

-

low

low

low

low

low

high

high

computed

computed

computed

computed

computed

no

no

3.4 Extended Reference Attribute

In a relational database, relations are normalized and there is no duplication between different relations.

When a relation references another relation, a join is performed. The join operation has the disadvantage of

being slow when the data size increases. Speed is even more important in large databases such as MongoDB.

Consider a case where a document references a document in another collection. Since each document has an

object id (oid), you can reference another document using the oid. In this case, there is no duplication and you

must do a join. However, unlike relational DBs, MongoDB can reference documents in other collections while

including some duplication. This pattern is called the extended reference pattern. Since the duplicate attributes

exist in both collections, a join is not necessary when searching for these duplicate attributes, and the query

can be answered with only one collection. The downside is that if attributes are duplicated on both sides of the

two collections, it takes time to maintain consistency when updating attributes. Therefore, attributes that rarely

change are selected as duplicate attributes.

Figure 3 shows two collections, SubwayStation and Passengers, as an example. SubwayStation is referenced

in Passengers. Assume that the Passengers document references the SubwayStation document using the oid.

Extended

reference

Figure 3. Modeling with Extended Reference Pattern

SubwayStation Passengers

Extended
reference

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 460-465 (2024) 465

In order to retrieve the passenger information of the station, the documents of the two collections must be

loaded into the main memory and joined. As the document size continues to grow, this takes a lot of time and

reduces performance. Therefore, we duplicate frequently used but rarely updated attributes such as station line

number, station ID, and station name in both SubwayStation and Passengers. In this case, when these

frequently used attributes are in the query result, there is no need to join the two collections.

4. CONCLUSION

In this paper, we present data modeling using design patterns to implement Seoul public transportation data

of the Korea Public Data Portal into MongoDB. We analyze the data to find cases corresponding to each design

pattern, model them, and show examples of implementing a database in MongoDB. The first pattern,

polymorphic pattern, allows documents with slightly different attributes to coexist in a single collection. The

second pattern, subset pattern, reduces the size of the document by storing detailed information in a separate

collection. The third pattern, computed pattern increases query execution speed by reducing repetitive

calculations. The fourth pattern, extended reference pattern, allows duplicate attributes in multiple collections

to reduce join operations. The advantage of modeling with design patterns presented in this paper is that it can

improve database performance by utilizing the flexibility and availability of MongoDB.

We modeled and implemented a database based on open files and API’s provided by the Korea Public Data

Portal. In order to complete the modeling results, we need more information, such as how frequently actual

data is read and written, which data is needed together from the database, what is the size and performance

consideration of the document, and what is the growth rate of the data. These informations are determined and

vary depending on the application. Therefore, for further work, when building a public transportation database

application using MongoDB, the modeling method presented in this paper can be applied to complete the

database design.

REFERENCES

[1] E. Plugge, D. Hows, P. Membrey, and T. Hawkins, The Definitive Guide to MongoDB: A complete guide

to dealing with Big Data using MongoDB, Apress, 2015.

[2] A. Erraji, A. Maizate, and M. Ouzzif, “An Integral Approach for Complete Migration from a Relational

Database to MongoDB,” Journal of the Nigerian Society of Physical Sciences, Vol. 5, pp. 1089.

DOI: https://doi.org/10.46481/jnsps.2023.1089

[3] L. Rocha, F. Vale, E. Cirilo, D. Barbosa, and F. Mourao, “A framework for migrating relational datasets

to NoSQL,” Procedia Computer Science, Vol. 51, pp. 2593-2602, 2015.

DOI: https://doi.org/10.1016/j.procs.2015.05.367

[4] C. Győrödi, R. Győrödi, G. Pecherle, and A. Olah, “A comparative study: MongoDB vs. MySQL,” 13th

international conference on engineering of modern electric systems (EMES) IEEE, pp. 1-6, June 2015.

DOI: https://doi.org/10.1109/EMES.2015.7158433

[5] O. Alotaibi and E. Pardede, “Transformation of schema from relational database (RDB) to NoSQL

databases,” Data, Vol. 4, No. 4, pp. 148, 2019.

DOI: https://doi.org/10.3390/data4040148

[6] P. Atzeni, F. Bugiotti, L. Cabibbo, and R. Torlone, “Data modeling in the NoSQL world,” Computer

Standards & Interfaces, Vol. 67, 2020.

DOI: https://doi.org/10.1016/j.csi.2016.10.003

[7] D. Coupal and K. W. Alger, “Building with Patterns: A Summary,” https://www.mongodb.com/blog/post/

building-with-patterns-a-summary, April 2019, Updated: Sep 2024.

[8] Korea Public Data Portal. https://data.go.kr

[9] M. Min, “A Data Design for Increasing the Usability of Subway Public Data,” International Journal of

Internet, Broadcasting and Communication (IJIBC), Vol. 11, No. 4, pp. 18-25, 2019.

DOI: http://dx.doi.org/10.7236/IJIBC.2019.11.4.18

https://doi.org/10.46481/jnsps.2023.1089
https://doi.org/10.1016/j.procs.2015.05.367
https://doi.org/10.1109/EMES.2015.7158433
https://doi.org/10.3390/data4040148
https://doi.org/10.1016/j.csi.2016.10.003
https://www.mongodb.com/blog/post/%20building-with-patterns-a-summary
https://www.mongodb.com/blog/post/%20building-with-patterns-a-summary
https://data.go.kr/
http://dx.doi.org/10.7236/IJIBC.2019.11.4.18

