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Abstract 

The difference of this paper is that it analyzes the latest machine learning and deep learning tools for various 

tasks of program such as program search, understanding, completion, and review. In addition, the purpose of 

this study is to increase the understanding of various tasks of program by examining specific cases of applying 

various tasks of program based on tools. Recently, machine learning (ML) and deep learning (DL) 

technologies have contributed to automation and improvement of efficiency in various software development 

tasks such as program search, understanding, completion, and review. This study examines the characteristics 

of the latest ML and DL tools implemented for various tasks of program. Although these tools have many 

strengths, they still have weaknesses in generalization in various programming languages and program 

structures, and efficiency of computational resources. In this study, we evaluated the characteristics of these 

tools in a real environment. 

 
Keywords: Application Program, Machine learning, Deep learning, Use case, Software tool 

 

1. INTRODUCTION 

Recently, program tasks such as completing, reviewing, searching, modifying, understanding, reviewing, 

and optimizing programs have been rapidly developing based on machine learning and deep learning 

technologies. However, these studies have limited scalability due to their optimization for specific languages 

or program structures, and have been lacking in understanding the semantic context of programs. In addition, 

tools based on machine learning and deep learning require a lot of resources for calculations, and there are 

cases where integration is limited in automation. In this study, considering these environments, we examine 

the latest tools that can be used for various tasks of programs such as searching, understanding, completing, 

and reviewing, and identify their strengths and weaknesses. The results of the study are to understand the 

characteristics of machine learning tools and deep learning tools in terms of their strengths and weaknesses, 

and this understanding is expected to be helpful for future program work. For example, the Codex tool has 

excellent performance in program understanding and generation, but consumes a lot of resources. The 

Sourcegraph tool has excellent search performance in large program bases, but has limited performance in 

complex queries. Models such as Bidirectional Encoder Representations from Transformers (CodeBERT) 

show strengths in tasks based on semantic similarity between program and natural language, and can be applied 
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to environments such as automatic generation of program comments. The contribution of this study is to 

understand the usefulness or limitations in work environments such as actual program development, review, 

and completion, and to increase understanding in selecting appropriate tools.  

In addition, an accurate understanding of tools allows us to judge whether the tool is suitable for a specific 

task and understand the scope of its application. 

In Chapter 2, we will examine the scope, content, and characteristics of previous researchers' research on 

source program analysis. In Chapter 3, we will identify machine learning and deep learning-based tools 

appropriate for application environments such as program search, review, and completion, and present usage 

cases by comparing them by application environment. Chapter 4 concludes. 
 

2. RELATED RESEARCH  

Chen et al. studied the evaluation of large language models trained on program [1]. The researchers 

introduce Codex, a fine-tuned Generative Pre-trained Transformer (GPT) language model, and study Python-

based program writing functions. Feng et al. studied CodeBERT, a pre-trained model for programming and 

natural language [2]. The researchers develop CodeBERT with a transformer-based neural network structure 

to learn representations that support downstream applications such as natural language program retrieval and 

program documentation generation. Alon et al. presented a neural model to represent program fragments as 

program embeddings [3]. Program vectors can be used to predict semantic properties of snippets, and program 

is represented as a path in an abstract syntax tree. Guo et al. reported that pre-trained models for program 

improve the performance of program-related tasks such as program retrieval, completion, and summarization 

[4]. The researchers impart meaning to important programs and present GraphCodeBERT, a transformer-based 

pre-trained model. Alon et al. examine programs that have functions such as program summarization, 

documentation, and search from source program snippets, process source program as a sequence of tokens in 

neural network machine translation, and are interested in seq2seq models [5]. Researchers represent a program 

fragment as a set of paths constituting an abstract syntax tree (AST) and consider attention in decoding to 

restrict path selection. Guo et al. studied tools for AI-generated video software [6]. Researchers analyze PIKA 

Labs and RUNWAY in terms of performance, functionality, and scope of application.  
 

3. CASES BASED ON MACHINE AND DEEP LEARNING TOOL IN PROGRAM 

APPLICATION  

3.1 Tool Analysis using Machine Learning and Deep Learning 

 

Table 1 explains machine learning and deep learning tools used in the areas of program completion, 

representation, review, synthesis, search, and summary. 

Table 1. Cases of machine and deep learning tools 

Program Type Machine learning tool Deep Learning tool 

Completion  TabNine, Codota, IntelliCode Codex, Code T5, GPT-3/-4 

Representation  TabNine, Codota, IntelliCode CodeBERT, Code2Vec, GraphCodeBERT 

Review  IntelliCode, Codota Codex, DeepCode, GPT-3/-4 

Synthesis  PROSE, FlashFill Codex, DreamCode, DeepCode 

Search  Sourcegraph CodeBERT, GraphCodeBERT 

Summary  IntelliCode, Codota CodeBERT, GPT-4 

 

For completion, representation, review, summary of program based on machine learning tool, there are used 

by TabNine, Codota, and IntelliCode. TabNine, Codota, and IntelliCode are machine learning tools used for 
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program completion, which can be used to automate repetitive patterns. However, these tools may have low 

accuracy when the program structure is complex. They may also lack understanding of the context. These tools 

have limited expressive power in terms of program representation. In terms of program review, these tools are 

useful for simple bug detection, but are limited in detecting complex logical errors. 

The TabNine tool can run in cloud and local environments and is integrated with Codota to support powerful 

program completion. Depending on the network environment, the program completion speed may be slow in 

the cloud [7][8]. The Codota tool was acquired by Codota in 2020, and the functions of Codota were integrated 

into TabNine [9][10]. The IntelliCode tool is dependent on the Visual Studio environment and provides code 

review, completion, and style analysis functions [11]. On the other hand, for completion, representation, review, 

summary of program based on deep learning tools, there are used by Codex, Code T5, GPT-3/4, CodeBERT, 

Code2Vec, GraphCodeBERT, DeepCode. 

Codex, Code T5, GPT-3/-4 tools have excellent understanding of context and high accuracy for complex 

programs. These tools are highly dependent on training data and require a lot of resources for model training. 

Codex tool is powerful in converting natural language into program, but it may have privacy or security 

issues, so caution is required when using sensitive programs [12]. CodeT5 is strong in program conversion and 

summarization, and requires a lot of resources for initial setup and model training [13]. CodeBERT tool 

provides functions for searching and summarizing based on semantic understanding of program. It is also 

optimized for understanding the context of program [14]. Code2Vec tool is a model that learns vector 

representation of source program using machine learning. This tool analyzes the abstract syntax tree (AST) of 

program to understand the program structure [15]. The GraphCodeBERT tool is a specialized model that 

considers the graph structure of the program, but when using a pre-trained model or training a new model with a 

customized model, a strategy should be established considering the actual usage environment [16]. The Deep 

Code tool automatically detects errors or vulnerabilities in the program. It is integrated with the Synk platform 

and used for analysis. Privacy issues should be considered for cloud-based analysis of sensitive program [17]. 

Also, for synthesis, search of program based on machine learning tools, there are used by PROSE, FlashFill, 

and Sourcegraph. These tools are good for automated program generation of specific patterns and have high 

accuracy within a limited range. However, they are limited for general program generation. The PROSE tool 

automatically learns patterns and generates program when the user provides examples. Its weakness is that the 

flexibility of program generation is limited and learning is limited in complex scenarios. If pattern learning is 

incorrect, unintended program can be generated [18]. The FlashFill tool automatically completes the remaining 

program when a pattern is defined through an example. It is powerful for data organization in Excel. It is 

difficult to apply to complex data or program structures and has a weakness that it is suitable for simple patterns 

[18]. The Sourcegraph tool enables efficient program search in large program bases. It has high accuracy in 

program search. The Sourcegraph tool is fast in program search, but the search accuracy varies depending on 

the program structure or data type [20][21]. 

Also, for synthesis, search of program based on deep learning tool, there are used by Codex, DreamCode, 

DeepCode, CodeBERT, GPT-4. These tools can generate program suitable for complex requirements and can 

convert natural language specifications into program. In program search, CodeBERT or GraphCodeBERT 

tools can search based on semantic similarity of program and have high accuracy for complex queries. In the 

case of program summary, IntelliCode or Codota tools can improve the understanding of program through 

program summary and can automatically generate comments. In the case of CodeBERT and GPT-4, they have 

high understanding of program context, can summarize, and can be applied to complex program. 

The DreamCode tool can understand complex requirements and generate suitable program, but its safety in 

a commercial environment is not guaranteed [22][23]. 
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3.2 Analysis of Applied Cases based on Machine and Deep Learning Tool 

 

As shown in Table 2, machine learning and deep learning tools are used to provide program completion. An 

example of program completion is shown in the program snippet used. In the program snippet used, ‘numbers’ 

is a list with variables of numbers from 5 to 9. The ‘for’ loop sequentially iterates over each element of the 

‘numbers’ list. When the loop is executed, the next number in the list is assigned to the ‘numbers’ variable. 

‘def calculate_sum(x, y)’ defines a function named calculate_sum and takes parameters ‘x’ and ‘y’. The ‘return 

a + b’ function returns the sum of ‘x’ and ‘y’. The ‘return’ statement returns the result of the function to the 

calling location. The user program is being completed using GPT-4. 

Table 2. Used cases of program completion using ML/DL tool 

Type Used program Completion program case based on GPT-4 

Program numbers = [5, 6, 7, 8, 9] 

for number in numbers: 

def calculate_sum(x, y): 

print(number) 

 

return x + y 
 

 

Table 3 is an example of program representation using Tensor Flow. The left box in Table 3 is an example of 

a linear regression model. Data analysis consists of data generation, model variable setting, linear model, loss 

function, optimization method, and learning step definition, and the program is represented based on Tensor 

Flow. x_data and y_data are random data, and W and b are variables to be learned. This is an example of 

calculating the gradient of the loss function using tf.GradientTape and updating the variables through the 

optimizer. 

In addition, the right box in Table 3 is an example of building a CNN model based on Tensor Flow. Data 

construction consists of the process of CNN model layer classification, model configuration, model 

compilation, data loading and preprocessing, and model learning. We looked at an example of program 

representation based on Tensor Flow. To help understand the program representation, an example of building 

a CNN model using the MNIST dataset is shown. Convolutional layers and pooling layers are stacked to extract 

image features, and finally, classification is performed with a Dense layer. 

Table 3. Used cases of program representation using Tensor flow tool 

Type Program case based on Linear regression model Program case based on CNN model 

Program import tensorflow as tf 

import numpy as np 

 

# data generation 

x_data = np.random.rand(120).astype(np.float32) 

y_data = x_data * 0.01 + 0.5 

# mode parameter set up 

W=tf.Variable(tf.random.uniform([1],-1.0,1.0)) 

b = tf.Variable(tf.zeros([1])) 

 

# Linear model 

y = W * x_data + b 

 

# Loss function 

loss = tf.reduce_mean(tf.square(y - y_data)) 

 

# Optimization 

optimizer=tf.optimizers.SGD(learning_rate=0.5) 

import tensorflow as tf 

from tensorflow.keras import layers, models 

 

# Model 

model = models.Sequential([ 

layers.Conv2D(32, (3, 3), activation='relu', 

input_shape=(28, 28, 1)), 

layers.MaxPooling2D((2, 2)), 

layers.Conv2D(64, (3, 3), activation='relu'), 

layers.MaxPooling2D((2, 2)), 

layers.Conv2D(64, (3, 3), activation='relu'), 

layers.Flatten(), 

layers.Dense(64, activation='relu'), 

layers.Dense(10, activation='softmax') 

]) 

 

# Model comfile 

model.compile(optimizer='adam', 

 



398                            Use Cases of Program Task using Tools based on Machine Learning and Deep Learning 
 

 

 

# Trainin stage definition 

for step in range(201): 

with tf.GradientTape() as tape: 

y_pred = W * x_data + b 

loss_value=tf.reduce_mean(tf.square(y_pred-

y_data)) 

grads = tape.gradient(loss_value, [W, b]) 

optimizer.apply_gradients(zip(grads, [W, b])) 

if step % 20 == 0: 

print(f"Step {step}, Loss: {loss_value.numpy()}, 

W: {W.numpy()}, b: {b.numpy()}") 

loss='____entropy', 

metrics=['accuracy']) 

 

# Data load and preprocessing (EX: MNIST) 

# x_train (x_tr), y_train (y_tr);  

# x_test (x_t), y_test (y_t) 

mnist = tf.keras.datasets.mnist 

(x_tr, y_tr), (x_t, y_t) = mnist.load_data() 

x_tr, x_t = x_tr / 255.0, x_t / 255.0 

x_tr = x_tr[..., tf.newaxis] 

x_t = x_t[..., tf.newaxis] 

 

# Model training 

model.fit(x_tr, y_tr, epochs=5, 

validation_data=(x_t, y_t)) 

 

Table 4 shows an example of program synthesis using the Keras tool. The Keras tool is a deep learning 

framework in Python [24][25]. Program synthesis is the process of combining multiple S/W programs or 

program fragments to create a larger program. For example, a CNN model that processes image data or an 

RNN model that processes text data describing the image can be synthesized to create a multi-modal model, 

which is a composite prediction model. The model synthesis process includes image input processing and 

model definition processes in the CNN model, and text input processing and model definition processes in the 

RNN model. In the model synthesis process, the composition is model synthesis, which is the process of 

creating a composite model, which is the combined model that is the output of the CNN model and the RNN 

model, and it consists of defining the combined final model, model compilation, model training, and creating 

a virtual model through model training. In the composite model processing, the outputs of the CNN and RNN 

are combined to create a fully connected (Dense) layer composite model that ultimately predicts the probability 

for 10 classes. 

Table 4. Used cases of program in program synthesis based Keras tool 

Type Program synthesis using Keras 

Program from tensorflow.keras import layers, models 

CNN model: image input processing  

# CNN model definition (64*64 size of image) 

image_input = layers.Input(shape=(64, 64, 3)) 

x = layers.Conv2D(32, (3, 3), activation='relu')(image_input) 

x = layers.MaxPooling2D((2, 2))(x) 

… 

x = layers.Flatten()(x) 

x = layers.Dense(128, activation='relu')(x) 

 

cnn_output = layers.Dense(64, activation='relu')(x) 

 

2. RNN model: text input processing   

from tensorflow.keras import layers, models 

 

# RNN model definition 

text_input = layers.Input(shape=(100,)) 

y = layers.Embedding(input_dim=10000, output_dim=64)(text_input) 

y = layers.LSTM(128)(y) 

rnn_output = layers.Dense(64, activation='relu')(y) 

 

3. Model synthesis: output combination of CNN + RNN (complex model)  
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from tensorflow.keras import layers, models 

 

# Model complex 

combined = layers.concatenate([cnn_output, rnn_output]) 

 

# Final model using combined output 

z = layers.Dense(128, activation='relu')(combined) 

z = layers.Dense(10, activation='softmax')(z) 

 

# final model definition 

model = models.Model(inputs=[image_input, text_input], outputs=z) 

 

# Model comfile 

model.compile(optimizer='adam', loss='__entropy', metrics=['accuracy']) 

 

4. Model training  

# Generation of virtual data 

import numpy as np 

 

image_data = np.random.random((1100, 64, 64, 3)) 

text_data = np.random.randint(11000, size=(1100, 100)) 

labels = np.random.randint(10, size=(1100, 10)) 

 

# Model training 

model.fit([image_data, text_data], labels, epochs=10, batch_size=32) 

 

 

Table 5 shows an example of program search based on DeepLearning4J (DL4J). DL4J is an open source 

deep learning library that implements and executes deep learning models in Java and Scala environments 

[26][27]. 

Table 5. Used cases of program in program search based on DeepLearning4J tool 

Type Program search using DeepLearning4J 

Program # Neural network set up definition, and so on : Library import 

import org.deeplearning4j.nn.conf.MultiLayerConfiguration; 

import org.deeplearning4j.nn.conf.NeuralNetConfiguration; 

 …. 

import org.nd4j.linalg.lossfunctions.LossFunctions; 

# Neural network basic configuration 

public class Example { 

public static void main(String[] args) { 

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder() 

# Update parameter: iteration set up  

.iterations(1) 

# Weight initialization method set up 

.weightInit(WeightInit.XAVIER) 

# Learning rate set up 

.learningRate(0.1) 

# List builder for Neural network layer definition 

.list() 

 …….. 

} 
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} 

   

4. CONCLUSION  

Through this study, we were able to confirm that machine learning and deep learning-based program work 

tools are useful in tasks such as program search, understanding, completion, and review. In particular, tools 

such as Codex showed excellent performance in program understanding and generation, but have limitations 

in resource consumption and generalization issues. Tools such as Sourcegraph have excellent search 

performance in large-scale program bases, but performance improvement is needed in complex query 

processing. This study analyzed tool performance in an actual development environment in terms of strengths 

and weaknesses. This can help researchers select appropriate tools for various program tasks. In future studies, 

we plan to focus on developing tools with a hybrid approach that combines the strengths of ML and DL tools, 

lightweight models for real-time application, and interface research. 
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