
 International Journal of Internet, Broadcasting and Communication Vol.16 No.4 394-401 (2024)

 https://doi.org/10.7236/IJIBC.2024.16.4.394

Copyright© 2024 by The International Promotion Agency of Culture Technology. This is an Open Access article distributed under the terms

of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Use Cases of Program Task using Tools based on

Machine Learning and Deep Learning

Chae-Rim Hong1, Jin-Keun Hong2*

1Graduate Student, Department of AI & Bigdata, aSSIST University, Korea
2Professor, Div. of Advanced IT, Baekseok University, Korea

E-mail: jump071383@stud.assist.ac.kr, jkhong@bu.ac.kr

Abstract

The difference of this paper is that it analyzes the latest machine learning and deep learning tools for various

tasks of program such as program search, understanding, completion, and review. In addition, the purpose of

this study is to increase the understanding of various tasks of program by examining specific cases of applying

various tasks of program based on tools. Recently, machine learning (ML) and deep learning (DL)

technologies have contributed to automation and improvement of efficiency in various software development

tasks such as program search, understanding, completion, and review. This study examines the characteristics

of the latest ML and DL tools implemented for various tasks of program. Although these tools have many

strengths, they still have weaknesses in generalization in various programming languages and program

structures, and efficiency of computational resources. In this study, we evaluated the characteristics of these

tools in a real environment.

Keywords: Application Program, Machine learning, Deep learning, Use case, Software tool

1. INTRODUCTION

Recently, program tasks such as completing, reviewing, searching, modifying, understanding, reviewing,

and optimizing programs have been rapidly developing based on machine learning and deep learning

technologies. However, these studies have limited scalability due to their optimization for specific languages

or program structures, and have been lacking in understanding the semantic context of programs. In addition,

tools based on machine learning and deep learning require a lot of resources for calculations, and there are

cases where integration is limited in automation. In this study, considering these environments, we examine

the latest tools that can be used for various tasks of programs such as searching, understanding, completing,

and reviewing, and identify their strengths and weaknesses. The results of the study are to understand the

characteristics of machine learning tools and deep learning tools in terms of their strengths and weaknesses,

and this understanding is expected to be helpful for future program work. For example, the Codex tool has

excellent performance in program understanding and generation, but consumes a lot of resources. The

Sourcegraph tool has excellent search performance in large program bases, but has limited performance in

complex queries. Models such as Bidirectional Encoder Representations from Transformers (CodeBERT)

show strengths in tasks based on semantic similarity between program and natural language, and can be applied

IJIBC 24-4-45

Manuscript received: October. 23, 2024 / Revised: October. 28, 2024 / Accepted: November. 3, 2024

Corresponding Author: jkhong@bu.ac.kr

Tel: +82-41-550-2445

Professor, Division of Advanced IT, Baeokseok University, Korea

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 394-401 (2024) 395

to environments such as automatic generation of program comments. The contribution of this study is to

understand the usefulness or limitations in work environments such as actual program development, review,

and completion, and to increase understanding in selecting appropriate tools.

In addition, an accurate understanding of tools allows us to judge whether the tool is suitable for a specific

task and understand the scope of its application.

In Chapter 2, we will examine the scope, content, and characteristics of previous researchers' research on

source program analysis. In Chapter 3, we will identify machine learning and deep learning-based tools

appropriate for application environments such as program search, review, and completion, and present usage

cases by comparing them by application environment. Chapter 4 concludes.

2. RELATED RESEARCH

Chen et al. studied the evaluation of large language models trained on program [1]. The researchers

introduce Codex, a fine-tuned Generative Pre-trained Transformer (GPT) language model, and study Python-

based program writing functions. Feng et al. studied CodeBERT, a pre-trained model for programming and

natural language [2]. The researchers develop CodeBERT with a transformer-based neural network structure

to learn representations that support downstream applications such as natural language program retrieval and

program documentation generation. Alon et al. presented a neural model to represent program fragments as

program embeddings [3]. Program vectors can be used to predict semantic properties of snippets, and program

is represented as a path in an abstract syntax tree. Guo et al. reported that pre-trained models for program

improve the performance of program-related tasks such as program retrieval, completion, and summarization

[4]. The researchers impart meaning to important programs and present GraphCodeBERT, a transformer-based

pre-trained model. Alon et al. examine programs that have functions such as program summarization,

documentation, and search from source program snippets, process source program as a sequence of tokens in

neural network machine translation, and are interested in seq2seq models [5]. Researchers represent a program

fragment as a set of paths constituting an abstract syntax tree (AST) and consider attention in decoding to

restrict path selection. Guo et al. studied tools for AI-generated video software [6]. Researchers analyze PIKA

Labs and RUNWAY in terms of performance, functionality, and scope of application.

3. CASES BASED ON MACHINE AND DEEP LEARNING TOOL IN PROGRAM

APPLICATION

3.1 Tool Analysis using Machine Learning and Deep Learning

Table 1 explains machine learning and deep learning tools used in the areas of program completion,

representation, review, synthesis, search, and summary.

Table 1. Cases of machine and deep learning tools

Program Type Machine learning tool Deep Learning tool

Completion TabNine, Codota, IntelliCode Codex, Code T5, GPT-3/-4

Representation TabNine, Codota, IntelliCode CodeBERT, Code2Vec, GraphCodeBERT

Review IntelliCode, Codota Codex, DeepCode, GPT-3/-4

Synthesis PROSE, FlashFill Codex, DreamCode, DeepCode

Search Sourcegraph CodeBERT, GraphCodeBERT

Summary IntelliCode, Codota CodeBERT, GPT-4

For completion, representation, review, summary of program based on machine learning tool, there are used

by TabNine, Codota, and IntelliCode. TabNine, Codota, and IntelliCode are machine learning tools used for

396 Use Cases of Program Task using Tools based on Machine Learning and Deep Learning

program completion, which can be used to automate repetitive patterns. However, these tools may have low

accuracy when the program structure is complex. They may also lack understanding of the context. These tools

have limited expressive power in terms of program representation. In terms of program review, these tools are

useful for simple bug detection, but are limited in detecting complex logical errors.

The TabNine tool can run in cloud and local environments and is integrated with Codota to support powerful

program completion. Depending on the network environment, the program completion speed may be slow in

the cloud [7][8]. The Codota tool was acquired by Codota in 2020, and the functions of Codota were integrated

into TabNine [9][10]. The IntelliCode tool is dependent on the Visual Studio environment and provides code

review, completion, and style analysis functions [11]. On the other hand, for completion, representation, review,

summary of program based on deep learning tools, there are used by Codex, Code T5, GPT-3/4, CodeBERT,

Code2Vec, GraphCodeBERT, DeepCode.

Codex, Code T5, GPT-3/-4 tools have excellent understanding of context and high accuracy for complex

programs. These tools are highly dependent on training data and require a lot of resources for model training.

Codex tool is powerful in converting natural language into program, but it may have privacy or security

issues, so caution is required when using sensitive programs [12]. CodeT5 is strong in program conversion and

summarization, and requires a lot of resources for initial setup and model training [13]. CodeBERT tool

provides functions for searching and summarizing based on semantic understanding of program. It is also

optimized for understanding the context of program [14]. Code2Vec tool is a model that learns vector

representation of source program using machine learning. This tool analyzes the abstract syntax tree (AST) of

program to understand the program structure [15]. The GraphCodeBERT tool is a specialized model that

considers the graph structure of the program, but when using a pre-trained model or training a new model with a

customized model, a strategy should be established considering the actual usage environment [16]. The Deep

Code tool automatically detects errors or vulnerabilities in the program. It is integrated with the Synk platform

and used for analysis. Privacy issues should be considered for cloud-based analysis of sensitive program [17].

Also, for synthesis, search of program based on machine learning tools, there are used by PROSE, FlashFill,

and Sourcegraph. These tools are good for automated program generation of specific patterns and have high

accuracy within a limited range. However, they are limited for general program generation. The PROSE tool

automatically learns patterns and generates program when the user provides examples. Its weakness is that the

flexibility of program generation is limited and learning is limited in complex scenarios. If pattern learning is

incorrect, unintended program can be generated [18]. The FlashFill tool automatically completes the remaining

program when a pattern is defined through an example. It is powerful for data organization in Excel. It is

difficult to apply to complex data or program structures and has a weakness that it is suitable for simple patterns

[18]. The Sourcegraph tool enables efficient program search in large program bases. It has high accuracy in

program search. The Sourcegraph tool is fast in program search, but the search accuracy varies depending on

the program structure or data type [20][21].

Also, for synthesis, search of program based on deep learning tool, there are used by Codex, DreamCode,

DeepCode, CodeBERT, GPT-4. These tools can generate program suitable for complex requirements and can

convert natural language specifications into program. In program search, CodeBERT or GraphCodeBERT

tools can search based on semantic similarity of program and have high accuracy for complex queries. In the

case of program summary, IntelliCode or Codota tools can improve the understanding of program through

program summary and can automatically generate comments. In the case of CodeBERT and GPT-4, they have

high understanding of program context, can summarize, and can be applied to complex program.

The DreamCode tool can understand complex requirements and generate suitable program, but its safety in

a commercial environment is not guaranteed [22][23].

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 394-401 (2024) 397

3.2 Analysis of Applied Cases based on Machine and Deep Learning Tool

As shown in Table 2, machine learning and deep learning tools are used to provide program completion. An

example of program completion is shown in the program snippet used. In the program snippet used, ‘numbers’

is a list with variables of numbers from 5 to 9. The ‘for’ loop sequentially iterates over each element of the

‘numbers’ list. When the loop is executed, the next number in the list is assigned to the ‘numbers’ variable.

‘def calculate_sum(x, y)’ defines a function named calculate_sum and takes parameters ‘x’ and ‘y’. The ‘return

a + b’ function returns the sum of ‘x’ and ‘y’. The ‘return’ statement returns the result of the function to the

calling location. The user program is being completed using GPT-4.

Table 2. Used cases of program completion using ML/DL tool

Type Used program Completion program case based on GPT-4

Program numbers = [5, 6, 7, 8, 9]

for number in numbers:

def calculate_sum(x, y):

print(number)

return x + y

Table 3 is an example of program representation using Tensor Flow. The left box in Table 3 is an example of

a linear regression model. Data analysis consists of data generation, model variable setting, linear model, loss

function, optimization method, and learning step definition, and the program is represented based on Tensor

Flow. x_data and y_data are random data, and W and b are variables to be learned. This is an example of

calculating the gradient of the loss function using tf.GradientTape and updating the variables through the

optimizer.

In addition, the right box in Table 3 is an example of building a CNN model based on Tensor Flow. Data

construction consists of the process of CNN model layer classification, model configuration, model

compilation, data loading and preprocessing, and model learning. We looked at an example of program

representation based on Tensor Flow. To help understand the program representation, an example of building

a CNN model using the MNIST dataset is shown. Convolutional layers and pooling layers are stacked to extract

image features, and finally, classification is performed with a Dense layer.

Table 3. Used cases of program representation using Tensor flow tool

Type Program case based on Linear regression model Program case based on CNN model

Program import tensorflow as tf

import numpy as np

data generation

x_data = np.random.rand(120).astype(np.float32)

y_data = x_data * 0.01 + 0.5

mode parameter set up

W=tf.Variable(tf.random.uniform([1],-1.0,1.0))

b = tf.Variable(tf.zeros([1]))

Linear model

y = W * x_data + b

Loss function

loss = tf.reduce_mean(tf.square(y - y_data))

Optimization

optimizer=tf.optimizers.SGD(learning_rate=0.5)

import tensorflow as tf

from tensorflow.keras import layers, models

Model

model = models.Sequential([

layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(28, 28, 1)),

layers.MaxPooling2D((2, 2)),

layers.Conv2D(64, (3, 3), activation='relu'),

layers.MaxPooling2D((2, 2)),

layers.Conv2D(64, (3, 3), activation='relu'),

layers.Flatten(),

layers.Dense(64, activation='relu'),

layers.Dense(10, activation='softmax')

])

Model comfile

model.compile(optimizer='adam',

398 Use Cases of Program Task using Tools based on Machine Learning and Deep Learning

Trainin stage definition

for step in range(201):

with tf.GradientTape() as tape:

y_pred = W * x_data + b

loss_value=tf.reduce_mean(tf.square(y_pred-

y_data))

grads = tape.gradient(loss_value, [W, b])

optimizer.apply_gradients(zip(grads, [W, b]))

if step % 20 == 0:

print(f"Step {step}, Loss: {loss_value.numpy()},

W: {W.numpy()}, b: {b.numpy()}")

loss='____entropy',

metrics=['accuracy'])

Data load and preprocessing (EX: MNIST)

x_train (x_tr), y_train (y_tr);

x_test (x_t), y_test (y_t)

mnist = tf.keras.datasets.mnist

(x_tr, y_tr), (x_t, y_t) = mnist.load_data()

x_tr, x_t = x_tr / 255.0, x_t / 255.0

x_tr = x_tr[..., tf.newaxis]

x_t = x_t[..., tf.newaxis]

Model training

model.fit(x_tr, y_tr, epochs=5,

validation_data=(x_t, y_t))

Table 4 shows an example of program synthesis using the Keras tool. The Keras tool is a deep learning

framework in Python [24][25]. Program synthesis is the process of combining multiple S/W programs or

program fragments to create a larger program. For example, a CNN model that processes image data or an

RNN model that processes text data describing the image can be synthesized to create a multi-modal model,

which is a composite prediction model. The model synthesis process includes image input processing and

model definition processes in the CNN model, and text input processing and model definition processes in the

RNN model. In the model synthesis process, the composition is model synthesis, which is the process of

creating a composite model, which is the combined model that is the output of the CNN model and the RNN

model, and it consists of defining the combined final model, model compilation, model training, and creating

a virtual model through model training. In the composite model processing, the outputs of the CNN and RNN

are combined to create a fully connected (Dense) layer composite model that ultimately predicts the probability

for 10 classes.

Table 4. Used cases of program in program synthesis based Keras tool

Type Program synthesis using Keras

Program from tensorflow.keras import layers, models

CNN model: image input processing

CNN model definition (64*64 size of image)

image_input = layers.Input(shape=(64, 64, 3))

x = layers.Conv2D(32, (3, 3), activation='relu')(image_input)

x = layers.MaxPooling2D((2, 2))(x)

…

x = layers.Flatten()(x)

x = layers.Dense(128, activation='relu')(x)

cnn_output = layers.Dense(64, activation='relu')(x)

2. RNN model: text input processing

from tensorflow.keras import layers, models

RNN model definition

text_input = layers.Input(shape=(100,))

y = layers.Embedding(input_dim=10000, output_dim=64)(text_input)

y = layers.LSTM(128)(y)

rnn_output = layers.Dense(64, activation='relu')(y)

3. Model synthesis: output combination of CNN + RNN (complex model)

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 394-401 (2024) 399

from tensorflow.keras import layers, models

Model complex

combined = layers.concatenate([cnn_output, rnn_output])

Final model using combined output

z = layers.Dense(128, activation='relu')(combined)

z = layers.Dense(10, activation='softmax')(z)

final model definition

model = models.Model(inputs=[image_input, text_input], outputs=z)

Model comfile

model.compile(optimizer='adam', loss='__entropy', metrics=['accuracy'])

4. Model training

Generation of virtual data

import numpy as np

image_data = np.random.random((1100, 64, 64, 3))

text_data = np.random.randint(11000, size=(1100, 100))

labels = np.random.randint(10, size=(1100, 10))

Model training

model.fit([image_data, text_data], labels, epochs=10, batch_size=32)

Table 5 shows an example of program search based on DeepLearning4J (DL4J). DL4J is an open source

deep learning library that implements and executes deep learning models in Java and Scala environments

[26][27].

Table 5. Used cases of program in program search based on DeepLearning4J tool

Type Program search using DeepLearning4J

Program # Neural network set up definition, and so on : Library import

import org.deeplearning4j.nn.conf.MultiLayerConfiguration;

import org.deeplearning4j.nn.conf.NeuralNetConfiguration;

 ….

import org.nd4j.linalg.lossfunctions.LossFunctions;

Neural network basic configuration

public class Example {

public static void main(String[] args) {

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()

Update parameter: iteration set up

.iterations(1)

Weight initialization method set up

.weightInit(WeightInit.XAVIER)

Learning rate set up

.learningRate(0.1)

List builder for Neural network layer definition

.list()

 ……..

}

400 Use Cases of Program Task using Tools based on Machine Learning and Deep Learning

}

4. CONCLUSION

Through this study, we were able to confirm that machine learning and deep learning-based program work

tools are useful in tasks such as program search, understanding, completion, and review. In particular, tools

such as Codex showed excellent performance in program understanding and generation, but have limitations

in resource consumption and generalization issues. Tools such as Sourcegraph have excellent search

performance in large-scale program bases, but performance improvement is needed in complex query

processing. This study analyzed tool performance in an actual development environment in terms of strengths

and weaknesses. This can help researchers select appropriate tools for various program tasks. In future studies,

we plan to focus on developing tools with a hybrid approach that combines the strengths of ML and DL tools,

lightweight models for real-time application, and interface research.

REFERENCES

[1] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de O. Pinto, J. Kaplan, et. al, “Evaluating Large Language

Models Trained on Code,” https://arxiv.org/pdf/2107.03374. pp. 1-35. Jul 2021.

DOI: https://doi.org/10.48550/arXiv.2107.03374

[2] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, et. al, “CodeBERT: A Pre-Trained Model for Programming

and Natural Languages,” https://arxiv.org/abs/2002.08155, pp. 1-12, Sep 2020.

DOI: https://doi.org/10.48550/arXiv.2002.08155

[3] U. Alon, M. Zilberstein, O. Levy, E. Yahav, “code2vec: Learning Distributed Representations of Code,”

https://arxiv.org/pdf/1803.09473. in Proc. ACM on Programming Languages, Vol. 3, Issue POPL, No. 40,

pp. 1-29, Jan 2019. DOI: https://doi.org/10.1145/3290353

[4] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, et. al, “GraphCodeBERT: Pre-training code Representations

with Data Flow,” in Proc. ICLR2021 9th, https://arxiv.org/abs/2009.08366, pp. 1-18, Sep 2021.

DOI: https://doi.org/10.48550/arXiv.2009.08366

[5] U. Alon, S. Brody, O. Levy, E. Yahav, “code2seq: Generating Sequences from Structure Representations

of Code,” https://arxiv.org/abs/1808.01400, in Proc. ICLR2019, pp. 1-22.

DOI: https://doi.org/10.48550/arXiv.1808.01400

[6] B. Guo, X. Shan, J. Chung, “A Comparative Study on the Features and Applications of AI Tools – Focus

on PIKA Labs and RUNWAY,” The Journal of The Institute of Internet, Broadcasting and

Communication (JIIBC), Vol. 16, No. 1, pp. 86-91, Feb 2024. DOI: https://doi.org/10.7236/IJI

BC.2024.16.1.86

[7] TabNine, https://www.tabnine.com/.

[8] TabNine, https://github.com/codota/TabNine

[9] Codota, https://www.tabnine.com/.

[10] Codota, https://github.com/codota

[11] MS IntelliCode, https://visualstudio.microsoft.com/ko/services/intellicode/

[12] OpenAI Codex, https://openai.com/

[13] Salesforce Research CodeT5, https://github.com/salesforce/CodeT5

[14] MS Research, https://github.com/microsoft/CodeBERT

[15] Technion Israel Institute of Technology, https://github.com/tech-srl/code2vec

[16] MS Research, https://github.com/microsoft/graphcodebert

[17] Snyk, https://snyk.io/platform/deepcode-ai/

https://doi.org/10.48550/arXiv.2002.08155
https://arxiv.org/pdf/1803.09473
https://dl.acm.org/toc/pacmpl/2019/3/POPL
https://doi.org/10.1145/3290353
https://arxiv.org/abs/2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://arxiv.org/abs/1808.01400
doi:%20https://doi.org/10.48550/arXiv.1808.01400
doi:%20https://doi.org/10.48550/arXiv.1808.01400
https://doi.org/10.7236/IJI%20BC.2024.16.1.86
https://doi.org/10.7236/IJI%20BC.2024.16.1.86

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 394-401 (2024) 401

[18] MS Research, https://github.com/microsoft/prose

[19] MS, https://www.scribd.com/document/632501043/Flash-fill-1

[20] Sourcegraph, https://sourcegraph.com/

[21] Sourcegraph, https://github.com/sourcegraph/sourcegraph

[22] DreamCode, https://github.com/DreamPoland

[23] DreamCode, https://www.dreamcode.io/

[24] Keras, https://keras.io/

[25] Keras, https://github.com/keras-team/keras

[26] Deeplearning4J, https://github.com/deeplearning4j

[27] Deeplearning4J, https://github.com/deeplearning4j/deeplearning4j

