
International Journal of Internet, Broadcasting and Communication Vol.16 No.4 226-234 (2024)

http://dx.doi.org/10.7236/IJIBC.2024.16.4.226

Copyright© 2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Development of Cloud-based Smart Farm Management System while

Considering Its Maintenance Aspects

Minseok Choi

Associate Professor, Div. of A.I Convergence, Sahmyook University, Korea

mschoi@syu.ac.kr

Abstract

Measures to enhance a cloud-based smart farm management system were proposed to improve its efficiency

and maintenance. The existing system had achieved efficiency and stability by utilizing a web-based operating

program with a general-purpose microcomputer and Linux. However, this system faced issues with

synchronization and maintenance while concurrent tasks were being performed. Synchronization issues were

solved by implementing an embedded DB, and the system was upgraded to allow over-the-air (OTA) software

updates. Additionally, a method was also proposed to enable remote maintenance using tunneling. It was

determined that applying the proposed method can contribute to the widespread adoption of smart farms, in

addition to reducing maintenance costs. Furthermore, this system can also be expanded into a universal system

applicable to different service models in the future.

Keywords: Smart Farm, Cloud Farm, Intelligent Cultivation, Greenhouse, Remote Maintenance

1. Introduction

The merging of information and communication technology (ICT) with other sectors has led to the

emergence of various synergies. In particular, there is a growing need for advanced agricultural environments

that integrate ICT to address the challenges posed by declining and aging rural populations and to enhance

competitiveness [1,2]. Smart agriculture, which combines ICT and agriculture, has been garnering attention as

a key driver of innovation and sustainable growth in agriculture [3]. Efforts are being made to pivot from

traditional agriculture based on accumulated knowledge to intelligent agriculture that utilizes data. In addition,

intelligent environments are being disseminated without spatiotemporal constraints through networks as a

model for future agriculture [4]. Furthermore, the Internet of Things (IoT) has made it possible to collect and

remotely monitor agricultural environment data, while the application of artificial intelligence (AI) can

enhance the efficient management of resources and the overall quality of the agricultural system [5-8]. In

addition, real-time event monitoring through various sensors and the analysis of collected data have provided

efficient management tools for better decision-making and improved operations and management [9-11].

IJIBC 24-4-26

Manuscript Received: September. 30, 2024 / Revised: October. 5, 2024 / Accepted: October. 10, 2024

Corresponding Author: mschoi@syu.ac.kr

Tel: +82-2-3399-1560, Fax: +82-2-3399-1567

Associate Professor, Div. of A.I Convergence, Sahmyook University, Korea

mailto:mschoi@syu.ac.kr

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 226-234(2024) 227

Recently, there has been a growing interest in urban agriculture, as well as a desire for short weekend

getaways to experience rural lifestyles. This has created a demand for small-scale, low-cost vertical smart

farms that can use minimal space for agricultural activities [11]. For the mass production and distribution of

these small-scale smart farms, it is crucial to design standardized hardware and implement efficient control

systems. It is also necessary to consider the scalability and maintenance of the management system for different

usage environments. Therefore, this study introduces a previously proposed cloud-based smart farm

management system and presents measures to improve the management and maintenance of clients in a large-

scale deployment environment.

This paper is structured as follows: Section 2 describes the previously implemented smart farm system,

Section 3 discusses improvement measures for efficient management and maintenance, and Section 4 presents

the results and findings.

2. Smart Farm Management System

2.1 Previous System Configuration

As shown in Figure 1(a), the existing cloud-based smart farm system consisted of a locally operated smart

farm client system, a cloud management system that integrated and managed multiple local smart farms

connected via the Internet and stored collected environmental data, and a user application.

Figure 1. Configuration of the smart farm system [5]

The local smart farm system collected environmental data from unit facilities and controlled the cultivation

environment. Its configuration is shown in Figure 1(b).

2.2 Local Management System

The local smart farm management system was designed to measure and collect various environmental data,

such as illuminance, humidity, temperature, and CO2 concentration, through sensor interfaces. It also

controlled diverse environmental factors, such as lighting, heating, cooling, humidification, dehumidification,

Desktop
User

Mobile
User

Cloud Farm Server

Internet

Farm Client Farm Client Farm Client

Micro computer
(Raspberry Pi)

HW controller

Sensor
Interface

Switch
Interface

sensor #1

sensor #2

sensor #n

.

.

.

sw #1

sw #2

sw #n

.

.

.

Local Management System

LCD Touch Screen
(800x600)

(a) (b)

228 Development of Cloud-based Smart Farm Management System while Considering Its Maintenance Aspects

circulation, and ventilation, through switch interfaces. As shown in Figure 2, the local smart farm unit was

implemented as a closed-unit smart farm with a container structure to separate the growing conditions from

the external environment.

Figure 2. Local smart farm unit: (a) outer view, (b) inner view, (c) management system[5]

The local management system used a Raspberry Pi 3 Model B+ as the microcomputer, and an 800 x 600-

resolution LCD touchscreen was connected as an input/output device to implement the user interface. For

stable hardware operation, a separate controller board was configured to control various sensor inputs and relay

switches for device operation. This controller board was connected to the Raspberry Pi via a serial interface.

The program development environment for the local management system was set up with Linux-based

Raspbian as the operating system, and MySQL was used as the database management system to store various

settings and environmental data. Additionally, NGINX was used as the local web server to implement the web-

based user interface (UI), and the web browser was run in kiosk mode to display the user interface on the LCD

screen. The operating program for the system was web-based and implemented using PHP, HTML5, and

JavaScript to improve the efficiency of the development work.

2.3 Cloud Management System

The cloud management system, which integrates and manages the local management systems, consists of

a database server for storing environmental data and a web-based integrated management server. The basic

server configuration was based on Amazon Web Services (AWS), Amazon’s cloud computing solution. The

database server used Amazon Aurora, a cloud-based MySQL-compatible relational database service with full

MySQL compatibility, and the web-based management server was configured using Amazon EC2.

The cloud management system’s database was designed to have the same structure as the local management

system database, with the addition of a unique terminal number to distinguish each client system. Data transfer

for synchronization from the local system to the cloud server used a REST architecture based on HTTP. Each

terminal processed various information, such as real-time environmental data, environmental settings, and

equipment operation specifications, in a JSON format and transmitted this information to the cloud web server,

which synchronized the transmitted data with the database.

When a user remotely accesses the cloud server and operates the local system, the cloud server’s settings

need to be synchronized with the local management system. In this case, unlike the previous scenario, the

synchronization data is transferred from the server to the client's local web server in a REST format, and the

local web server synchronizes the transferred data with the system.

(a) (b) (c)

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 226-234(2024) 229

Figure 3. Architecture of synchronization between server and client

Figure 3 outlines the synchronization architecture between the server and the client. As shown in Figure

3(b), if the client is connected to a network address translation (NAT) or port address translation (PAT) device,

such as a wired or wireless router, the nature of the HTTP protocol makes it impossible for the server to connect

to the client. In most cases, local management systems do not have independent IP addresses and instead access

the Internet through an IP router. Unless these issues are resolved, real-time synchronization via remote user

access becomes difficult.

Figure 4. Socket Tunneling

The server-client synchronization issue was addressed by implementing socket tunneling from the client to

the server, as shown in Figure 4. This setup enables the server to make a REST request via HTTP to the client

through the tunnel, even if a PAT device exists. As a result, users can remotely execute commands through the

cloud server. The commands are then synchronized and immediately executed on the local terminal.

3. Improving the Smart Farm Control System

The previous system was developed as a web application through a web server to ensure development

efficiency and scalability. Due to the nature of web applications, synchronization issues may occur when

multiple tasks are running simultaneously because unit tasks are performed asynchronously via a web server.

In addition, as local smart farms are installed and operated in different regions, there is a need for a fast and

efficient way to update the local management system to quickly respond to various operational requirements

and issues that may arise in different operating environments. In such cases, there should be a means to

remotely check and resolve issues without requiring physical visits.

3.1 Task and HW Synchronization

The local management system operates in an environment where various tasks can occur simultaneously.

Cloud
Web

Server

Client
Web

Server

REST (HTTP)

REST (HTTP)

internet
Cloud
Web

Server
internet PAT

Client
Web

Server

Client
Web

Server

(a) (b)

Cloud
Web

Server

Client
Web

Server

Socket Tunnel

internet PAT

230 Development of Cloud-based Smart Farm Management System while Considering Its Maintenance Aspects

These include tasks initiated by user interaction via the LCD screen, periodic background tasks registered in

the system, and tasks requested from the cloud server. Due to the nature of web-based programs, tasks for each

request are executed independently, and synchronization is not supported. For task synchronization, a file-

based synchronization method can be used in PHP programs. However, since the client uses a DBMS for local

data management, it is more reliable and efficient to implement task synchronization by storing

synchronization information in the DB

Figure 5. Synchronizing Tasks Using the DB

The local management system is connected to the HW switch to control external devices. If the power is

interrupted during system operation, the HW switches will be reset. When the power is restored, the final

switch state stored in the DB and the actual HW switch state will be different. To address this issue, a switch

synchronization service was implemented to run when Linux boots.

Figure 6. HW Switch Synchronization Service Structure

3.2 Software Fix and Updates

All Raspberry Pi devices use microSD cards as their primary storage device. The traditional method for

distributing system software involves distributing the system's SD card image as a file and copying it to the

SD card. However, this method has its drawbacks, such as the complexity of updating a new image and backing

up existing data. Therefore, a user-friendly and efficient software distribution and update method is required,

which is why this study proposes implementing over-the-air (OTA) software updates, as shown in Figure 7.

Task #1

Task status Table

MySQL DBMS Task #2

Task #N

Raspberry Pi booting

SW init service (system registered)

Run SW sync scriptSW status Table

MySQL DBMS
SW #1

SW #2

SW #N

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 226-234(2024) 231

Figure 7. Software Update via OTA

In the case of web applications, program updates can be executed by copying added or modified files to the

client’s web document directory. However, updating individual files can complicate version control, so the

entire file has been versioned. Due to the nature of web programming, the entire root directory of the web

document can be compressed and distributed. By registering the compressed file on the server, as shown in

Figure 8, the client can check the update information and proceed with the update. The server can also force

the client to update if necessary.

Figure 8. Software update: (a) management page on server, (b) setup page on client

There is also a need to implement a recovery function to prevent potential malfunctions or system freeze

during the update process. The figure below illustrates the update process with a recovery function.

As shown in Figure 8(a), the downloaded update file is initially extracted to the update directory

(www/update). Then, the web root directory (www/html), which contains the current version of the program,

is moved to the backup directory (/www/old). After the update directory has been designated as the new web

root, the update script is executed. Within the update script, any other necessary DB or system configuration

changes are processed using shell scripts. Figure 8(b) shows the verification process of a program that is

installed normally by the registered service upon booting Linux. If there are issues with the installation file

due to an update or other causes, the previous version is reinstated first. Should there be any issues with the

previous version, the program is switched to emergency recovery mode. In emergency recovery mode, after

setting up the network, a simple menu is presented to proceed with software updates.

Cloud Farm Server

Internet

Farm Client

Farm Client

Farm Client

SW update
released

SW update
download
to client

(a) (b)

232 Development of Cloud-based Smart Farm Management System while Considering Its Maintenance Aspects

Figure 8. (a) Software update process, (b) recovery process

3.3 Remote Access Support

Small modular smart farms can be installed in different regions and exported to other countries.

Maintenance issues for multiple smart farm clients installed nationwide could become a barrier to their

widespread adoption. While hardware issues require on-site repairs, visiting each site to resolve operational

issues and requirements can be costly. It is therefore necessary to monitor clients remotely and provide remote

access to check and repair the system.

To facilitate maintenance, web-based DB management and maintenance functions have been implemented

on the client to allow remote access to check the system’s status and review various logs stored in the DB via

the web. However, as described in Section 2.3, it is difficult to access the client’s web server directly from the

outside, and this can lead to security issues. Therefore, a secure shell (SSH) tunnel was created between the

computer subject to maintenance and the cloud server as shown in Figure 10. Next, port forwarding was set

up on the server to connect to the tunnel created for client access. This allows web access to the client through

the server via the secure tunnel.

Figure 9. Client access via tunneling

If access to the entire client system is required, an additional SSH tunnel can be created from the client to

the server to open direct SSH access to the client in the same way. Once SSH access is available, users can

Download update files

Check md5 checksum of downloaded file

Uncompress file to 'www/update' directory

Move 'www/html' to 'www/old'

Move 'www/update' to 'www/html'

Run update script

Reboot

Raspberry Pi booting

Recovery service (system registered)

Run recovery script

Check
'www/html/index.php'

Check
'www/old/index.php'

Move 'www/old' to 'www/html'

Error

Check
'www/core/index.php'

Copy 'www/core' to 'www/html'

Continue booting

yes

yes

yes

no

no

no

Restore old version

Emergency recovery

(a) (b)

Cloud
Web

Server

Client
Web

Server

Socket Tunnel

internet PATWorker
Computer

Socket Tunnel

internet

Port forwarding

International Journal of Internet, Broadcasting and Communication Vol.16 No.4 226-234(2024) 233

view system-wide status and logs, including the operating system, and modify and test the program source

directly. As shown in Figure 10, enabling remote maintenance via web and SSH access will reduce the burden

of remote maintenance and increase the adoption of smart farm clients.

Figure 10. Maintenance client using the Web and SSH

4. Conclusion and Discussion

This study proposed measures to improve the efficient management and maintenance of a cloud-based

smart farm control system, which is efficient for the distribution and operation of small-scale, standardized

vertical smart farms. The existing system used Raspberry Pi (a general-purpose microcomputer) and a Linux-

based OS to implement a local control system and introduced a web-based operating program to improve the

efficiency and stability of development. The operation of individual programs using web-based applications

and task scheduling in an operating system can improve stability, but it can also cause synchronization issues

between tasks. Therefore, synchronization between individual programs has been efficiently solved using an

embedded DB. A hardware synchronization service was also added to the Linux startup service to resolve

status inconsistencies caused by hardware resets, such as power failures.

Maintenance issues for distributed terminals need to be considered to expand the distribution of smart farm

clients and achieve nationwide distribution. To achieve this goal, this study proposed a method for

implementing OTA software updates and enabling remote access maintenance to enable a rapid response to

issues or new requirements. Adopting the proposed maintenance method is expected to expand the distribution

of smart farm clients.

In recent years, various service models using kiosks have emerged. Since the proposed method is capable

of implementing a local control system based on a kiosk connected to the cloud, it can be expanded into

research on the design and implementation of a universal system applicable to various service models in the

future.

References

[1] H. S. Kim, D. D. Lee and H. S. Kim, “Strategies and Tasks of ICT Convergence for the Creative Agriculture

Realization(R736)”, Seoul: Korea Rural Economic Institute, 2014.

[2] Y. Lee and C. M. Heo, “A Study on the Influence of Acceptance Factors of ICT Convergence Technology on the

Intention of Acceptance in Agriculture : Focusing on the Moderating Effect of Innovation Resistance”, Journal of

Cloud Farm ServerWorker
PC

Web

SSH

Farm Client

234 Development of Cloud-based Smart Farm Management System while Considering Its Maintenance Aspects

Digital Convergence, Vol. 17, No.9, pp. 115-126, 2019.

DOI: https://doi.org/10.14400/JDC.2019.17.9.115

[3] M. H. Ahn and C. M Heo, “The Effect of Technical Characteristics of Smart Farm on Acceptance Intention by

Mediating Effect of Effort Expectation”, Journal of Digital Convergence, Vol. 17, No. 6, pp. 145-157, 2019.

DOI: https://doi.org/10.14400/JDC.2019.17.6.145

[4] N. G. Yoon, J. S. Lee, G. S. Park and J. Y. Lee, “Korea smart farm policy and technology development status”,

Rural Resources, Vol. 59, No. 2, pp. 19-27, May 2017.

[5] Minseok Choi, “A study on the efficient Implementation method of cloud-based smart farm control system”,

Journal of Digital Convergence, Vol. 18, No. 3, pp. 171-177, 2019.

DOI: https://doi.org/10.14400/JDC.2020.18.3.000

[6] S. Qazi, B. A. Khawaja and Q. U. Farooq, “IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A

Critical Review, Current Challenges and Future Trends”, IEEE Access, Vol. 10, pp. 21219-21235, 2022.

DOI: https://doi.org/10.1109/ACCESS.2022.3152544

[7] Minseok Choi, “Smart Farm Management systemfor Improving Energy Efficiency”, Journal of Digital

Convergence, Vol. 19, No. 12, pp. 331-337, 2021.

DOI: https://doi.org/10.14400/JDC.2021.19.12.331

[8] Widianto, M., Ardimansyah, M., Pohan, H. and Hermanus, D, “A Systematic Review of Current Trends in

Artificial Intelligence for Smart Farming to Enhance Crop Yield”, Journal of Robotics and Control(JRC), Vol. 3,

No 3, pp. 269-278, May 2022.

DOI: https://doi.org/10.18196/jrc.v3i3.13760

[9] Cambra Baseca, Carlos, Sandra Sendra, Jaime Lloret, and Jesus Tomas, “A Smart Decision System for Digital

Farming”, Agronomy Vol. 9, No. 5: 216, 2019.

DOI: https://doi.org/10.3390/agronomy9050216

[10] H. Y. Shin, H. K. Yim and W. T. Kim, “Intelligent Green House Control System based on Deep Learning for

Saving Electric Power Consumption”, Journal of IKEEE, Vol. 22, No. 1, pp. 53-60, 2018.

https://doi.org/10.7471/ikeee.2018.22.1.53

[11] Arshad, Jehangir, Musharraf Aziz, Asma A. Al-Huqail, Muhammad Hussnain uz Zaman, Muhammad Husnain,

Ateeq Ur Rehman and Muhammad Shafiq, “Implementation of a LoRaWAN Based Smart Agriculture Decision

Support System for Optimum Crop Yield”, Sustainability, Vol.14, No. 2: 827, 2022.

DOI: https://doi.org/10.3390/su14020827

[12] Li Chen and Jae Eun Yoon, “Research on Spatial Layout Characteristics of Intelligent Farm”, Design Research,

Vol. 9, No. 2, pp.457-471, 2024.

DOI: https://doi.org/10.46248/kidrs.2024.2.457

