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Abstract 

 This paper introduces a decision-making framework for offloading tasks in home network environments, 

utilizing Distributed Reinforcement Learning (DRL). The proposed scheme optimizes energy efficiency while 

maintaining system reliability within a lightweight edge computing setup. Effective resource management has 

become crucial with the increasing prevalence of intelligent devices. Conventional methods, including on-device 

processing and offloading to edge or cloud systems, need help to balance energy conservation, response time, 

and dependability. To tackle these issues, we propose a DRL-based scheme that allows flexible and enhanced 

decision-making regarding offloading. Simulation results demonstrate that the proposed method outperforms the 

baseline approaches in reducing energy consumption and latency while maintaining a higher success rate. These 

findings highlight the potential of the proposed scheme for efficient resource management in home networks and 

broader IoT environments. 
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1. Introduction 

With the rapid advancement of the Internet of Things (IoT), smart devices (SDs) have become integral 

components in numerous aspects of our daily lives [1]. The increasing utilization of SDs in domains such as 

smart homes, smart healthcare, and smart cities necessitates the development of complex applications and 

large-scale data-processing capabilities [2]. Nevertheless, SDs are limited in their capacity to effectively 

address these requirements because of their constrained battery life and computational capabilities. 

Cloud computing was introduced to address these issues; however, the geographical distance between cloud 

data centers and smart devices results in high latency and energy consumption [3]. This issue is particularly 

problematic for applications that require real-time processing, for which cloud computing may not be a suitable 

solution. 

To address these challenges, edge computing is emerging as a solution that provides cloud-like 
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functionalities in close proximity to devices, thereby reducing latency and energy consumption [4]. 

Nevertheless, conventional edge-computing solutions predominantly focus on industrial environments, 

rendering them cost-prohibitive and intricate for implementation in residential network settings. 

Therefore, there is a growing need for lightweight edge-computing solutions suitable for home networks [5]. 

A lightweight edge-computing system for home networks can address the resource limitations of SDs while 

improving user convenience and energy efficiency. 

In this study, we propose an offloading decision method using Distributed Reinforcement Learning (DRL) 

to minimize energy consumption and ensure reliability in a lightweight edge-computing environment for home 

networks. DRL considers each smart device an agent, allowing them to learn individually or cooperatively. 

Through this, SDs can monitor their status (e.g., battery level, workload, and network conditions) in real-time 

and adapt to environmental changes to make optimal offloading decisions. 

By leveraging DRL, each device learns to optimize energy consumption and reliability by selecting actions, 

such as local processing, edge offloading, and cloud offloading. The reward function is designed to reflect the 

goal of minimizing energy consumption and maximizing reliability, thereby improving the resource utilization 

efficiency among devices. Furthermore, the overall performance of the home network system can be enhanced 

by enabling distributed agents to cooperate in learning. 

The structure of this paper is as follows: Section 2 introduces related work; Section 3 explains the proposed 

system model and problem definition; Section 4 presents the offloading decision algorithm using DRL in detail; 

Section 5 evaluates the algorithm's performance through simulations; and finally, Section 6 concludes the 

paper and discusses future research directions. 

2. Related Work 

2.1 Edge Computing and Offloading Techniques 

Cloud computing has been introduced to address the limited computational power and battery life of IoT 

devices. However, owing to its high latency and energy consumption, it is unsuitable for real-time applications 

[6]. To overcome this, edge computing has been proposed, which provides computational resources close to 

the devices, thereby reducing latency and energy consumption [7]. 

In edge computing environments, offloading decision techniques primarily establish optimal offloading 

strategies by considering factors such as the characteristics of tasks, network conditions, and resource status 

of devices [8]. For instance, [9] proposed an offloading policy aimed at minimizing latency and energy 

consumption, while [10] studied a multi-user offloading technique to enhance the energy efficiency of user 

devices. 

2.2 Offloading Decisions Using Reinforcement Learning 

Lightweight edge computing solutions tailored for home network environments can enhance user 

convenience and energy efficiency [11]. For example, [12] proposed a method to improve energy efficiency 

through cooperation between SDs in home networks, whereas [13] developed a lightweight platform for 

resource management in household IoT devices. Nevertheless, these studies have limitations in optimizing 

energy consumption and reliability in offloading decisions. Therefore, there is a growing need for research on 

offloading decision techniques that apply distributed reinforcement learning to respond to real-time changes 

in the SD status while optimizing energy consumption and reliability. 
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2.3 Lightweight Edge Computing in Home Networks 

Lightweight edge computing solutions tailored for home network environments can enhance user 

convenience and energy efficiency [14]. For example, [15] proposed a method to improve energy efficiency 

through cooperation between SDs in home networks, while [16] developed a lightweight platform for resource 

management in household IoT devices. 

Nevertheless, these studies have limitations in optimizing energy consumption and reliability in offloading 

decisions. Therefore, there is a growing need for research on offloading decision techniques that apply 

distributed reinforcement learning to respond to real-time changes in SD status while optimizing energy 

consumption and reliability. 

3. System Model 

In this paper, we present a system model for offloading decisions in a lightweight edge-computing 

environment tailored for home networks. The proposed model provides a foundation for establishing 

offloading strategies for each device, considering energy consumption and reliability. 

The smart-home network environment consists of N smart devices, each generating tasks that need to be 

processed. The system comprises SDs, lightweight edge-computing nodes, and a cloud server. SDs are IoT 

devices with limited computational capabilities and battery life that generate tasks like sensing data processing 

or responding to user requests. Lightweight edge computing nodes are deployed near the SDs to handle 

offloaded tasks. At the same time, the cloud server, located at the core of the network, processes tasks that 

cannot be handled by the edge nodes or those requiring large-scale computations. 

Each 𝑆𝐷𝑖 generates a task 𝜏𝑖, characterized by its data size 𝐷𝑖 (in bits), computational workload 𝐶𝑖 (in 

cycles), and maximum allowable delay 𝜏𝑖
𝑚𝑎𝑥 (in seconds). To process a task, the device can choose from 

three options: local processing, where the task is handled by the device itself; edge offloading, where the task 

is offloaded to a nearby lightweight edge node; and cloud offloading, where the task is offloaded to the cloud 

server for processing. 

3.1 Energy Consumption and Delay 

The task-processing method determines the energy consumption and delay for an SD, which consists of 

computational and communication energy. The local processing energy consumption, 𝐸𝑖
𝑙𝑜𝑐 , refers to the 

energy consumed when the task is processed on the device and is defined in (1). 

𝐸𝑖
𝑙𝑜𝑐 = 𝜅(𝑓𝑖

𝑙𝑜𝑐)
2

𝐶𝑖                                    (1) 

where 𝜅 is the circuit constant of the device, 𝑓𝑖
𝑙𝑜𝑐 is the local CPU frequency of device i, and 𝐶𝑖 is the 

computational workload of the task. The transmission energy required when offloading a task is the energy 

consumed for data transmission and is calculated in (2). 

𝐸𝑖
𝑡𝑥 = 𝑃𝑖

𝑡𝑥𝑇𝑖
𝑡𝑥                                    (2) 

where, 𝑃𝑖
𝑡𝑥 is the transmission power of the device, represents the power consumed during data 

transmission, and 𝑇𝑖
𝑡𝑥 is the data transmission time, which refers to the time taken to send the task input data 

to an edge node or cloud server. The reception energy 𝐸𝑖
𝑟𝑥  consumed when receiving the results of the 
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offloaded task is defined by (3) in. 

𝐸𝑖
𝑟𝑥 = 𝑃𝑖

𝑟𝑥𝑇𝑖
𝑟𝑥                                    (3) 

𝑃𝑖
𝑟𝑥represents the device's reception power, and 𝑇𝑖

𝑟𝑥 is the time required to receive the processed task 

results. Hence, the transmission energy increases proportionally with the transmission power and data 

transmission time, directly affecting the energy consumption of the device. The total offloading energy, 𝐸𝑖
𝑜𝑓𝑓

 

is the sum of the transmission and reception energy, and is defined in (4). 

𝐸𝑖
𝑜𝑓𝑓

= 𝐸𝑖
𝑡𝑥 + 𝐸𝑖

𝑟𝑥                                     (4) 

The total delay incurred while processing a task is the sum of all the times required for task completion, 

which includes the data transmission time, processing time, and result reception time. The local processing 

delay, 𝑇𝑖
𝑙𝑜𝑐, refers to the time taken to process the task on the device. It is calculated by dividing the 

computational workload by the device's local CPU frequency, as in (5). 

𝑇𝑖
𝑙𝑜𝑐 =

𝐶𝑖

𝑓𝑖
𝑙𝑜𝑐                                    (5) 

Where 𝐶𝑖 is the task's computational workload, and 𝑓𝑖
𝑙𝑜𝑐 is the local CPU frequency of device i. A higher 

computational capacity of the SD reduces the processing time, whereas larger workloads increase it. The 

offloading delay, 𝑇𝑖
𝑜𝑓𝑓

, is the total time incurred when offloading a task, consisting of data transmission, task 

processing, and result reception time. Each time is defined as follows: 

◼ This is the time to transmit task input data from the device to the edge node or cloud server. It is 

calculated by dividing the task data size 𝐷𝑖 by the uplink transmission rate 𝑅𝑖
𝑢𝑝

, as in (6). 

𝑇𝑖
𝑡𝑥 =

𝐷𝑖

𝑅
𝑖
𝑢𝑝                                    (6) 

◼ This is the time required to process the task on the server, calculated by dividing the task's 

computational workload 𝐶𝑖  by the server's CPU frequency 𝑓𝑠𝑒𝑟 . A higher computational 

capacity of the server reduces the processing time and is defined in (7). 

𝑇𝑖
𝑝𝑟𝑜𝑐

=
𝐶𝑖

𝑓𝑠𝑒𝑟                                    (7) 

◼ This refers to the time required to receive the processed task results from the device. It is 

calculated by dividing the result data size 𝐷𝑖
𝑟𝑒𝑠  by the downlink transmission rate 𝑅𝑖

𝑑𝑜𝑤𝑛, 

defined in (8). 

𝑇𝑖
𝑟𝑥 =

𝐷𝑖
𝑟𝑒𝑠

𝑅𝑖
𝑑𝑜𝑤𝑛                                    (8) 

Therefore, when processing a task, the total offloading delay is the sum of the data transmission time, task 

processing time, and result reception time and is defined in (9). 
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𝑇𝑖
𝑜𝑓𝑓

= 𝑇𝑖
𝑡𝑥 + 𝑇𝑖

𝑝𝑟𝑜𝑐
+ 𝑇𝑖

𝑟𝑥 =
𝐷𝑖

𝑅𝑖
𝑢𝑝 +

𝐶𝑖

𝑓𝑠𝑒𝑟 +  
𝐷𝑖

𝑟𝑒𝑠

𝑅𝑖
𝑑𝑜𝑤𝑛                     (9) 

This equation provides the total delay incurred during offloading, which varies based on network conditions, 

data size, and server processing capacity. 

3.2 Problem Statement 

The goal of this study was to optimize the offloading decisions of each device to minimize overall energy 

consumption while ensuring reliability. The offloading decision for each device i, denoted as 𝑎𝑖 ∈ {0, 1, 2}, is 

formulated as an optimization problem. Here, 𝑎𝑖 = 0 represents local processing, 𝑎𝑖 = 1 represents edge 

offloading, and 𝑎𝑖 = 2 represents cloud offloading. 

◼ The task is processed on the device itself, incurring no network costs but constrained by its 

computational capacity and battery life. 

◼ The task is offloaded to the edge node, where it is processed. Although network transmission is 

required, the edge node offers higher computational power and is located near the device, thereby 

reducing latency. 

◼ The task is offloaded to a cloud server with the highest computational power. However, the 

distance to the cloud may introduce a higher latency. 

The objective of this optimization problem is to minimize the energy consumption resulting from each 

device's offloading decision 𝑎𝑖. The objective function is defined by Equation (10). 

min
{𝑎𝑖}

∑ 𝐸𝑖(𝑎𝑖)𝑁
𝑖=1                                    (10) 

where 𝐸𝑖(𝑎𝑖) represents the energy consumption of device i, which is calculated based on the selected 

offloading option. Energy consumption includes computational energy for local processing and 

communication and processing energy for offloading. Offloading incurs additional energy for data 

transmission and reception as well as for processing energy at the server. In contrast, local processing 

consumes only computational energy on the device itself. 

This problem is addressed in a distributed environment, where the offloading decisions of each device can 

influence the decisions of the others. Each device learns to make optimal offloading decisions based on state 

and network conditions. 

4. Proposed Scheme 

This study applies DRL as an offloading decision-making technique to minimize the energy consumption 

of smart devices and ensure reliability in a lightweight edge-computing environment for home networks. The 

proposed method allows each device to make offloading decisions independently or cooperatively with the 

aim of optimizing resource allocation while adapting to various environmental changes. 

4.1 DRL-based Offloading Decision 

Each device makes offloading decisions using reinforcement learning. DRL enables each SD to 

autonomously learn optimal actions based on its state and surrounding environment without relying on a central 

server. This reduces network load and allows each device to make independent decisions. 
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◼ State (𝑺𝒊) : The current state of each device consists of battery level, task data size, 

computational requirements, and network conditions (uplink and downlink transmission rates). 

◼ Action (𝒂𝒊) : Each device chooses between local processing, edge offloading, or cloud 

offloading. 

◼ Reward (𝒓𝒊) : Devices receive a reward based on energy consumption and reliability. The 

reward function is designed to minimize energy consumption while ensuring reliability and is 

defined in (11). 

𝑟𝑖 = −𝐸𝑖(𝑎𝑖) + 𝜆 ∙ 𝑅𝑖(𝑎𝑖)                          (11) 

where 𝐸𝑖(𝑎𝑖)  represents the energy consumption for the selected offloading option, and 

𝑅𝑖(𝑎𝑖) represents the reliability of the chosen action. The parameter 𝜆 controls the trade-off 

between energy consumption and reliability. 

4.2 Training Process of the Proposed Scheme 

In the proposed method, Deep Q-Network (DQN) enables smart devices to learn optimal offloading 

decisions that minimize energy consumption while maintaining reliability. The DQN extends Q-learning using 

a neural network to approximate Q-values when the state-action space is enormous. Table 1 presents the 

pseudocode of the training process of the proposed DQN-based scheme. 

Table 1. Proposed scheme 

Step Description 

1 Initialize the Q-network with random weights and initialize the experience replay memory 

2 for each episode do 

3 Observe the current state 𝑠𝑖 is (e.g., battery level, task size, network status) 

4 Select an action ai using 𝜖-greedy: explore with probability 𝜖, or exploit using the Q-network 

5 Execute the selected action ai (local processing, edge offloading, or cloud offloading) 

6 
Observe the reward 𝑟𝑖 and the next state 𝑠𝑖′  

7 Store the experience (𝑠𝑖 , 𝑎𝑖, 𝑟𝑖 , 𝑠𝑖
′) in the replay memory 

8 Sample a minibatch of experiences from the replay memory 

9 Compute the target Q-values and update the Q-network by minimizing the loss function 

10  Decrease the exploration rate 𝜖 to balance exploration and exploitation 

11 end for 

The Q-network was initialized to approximate state-action values, and an experience replay memory was 

set up to store the learning samples. Action selection is determined randomly or by the Q-network, depending 

on the exploration-exploitation trade-off. After performing an action, the device observes the new state and 

reward, which are stored in replay memory. The Q-network was trained by minimizing the loss function using 

mini-batches sampled from the replay memory. As the training progresses, the exploration rate is gradually 

reduced, increasing the frequency of selecting optimal actions. Through this iterative process, each device 

learns to make offloading decisions that optimize the energy consumption and reliability in the home network 

environment, ultimately leading to efficient resource utilization. 
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5. Performance Evaluation 

In this study, we conducted experiments to evaluate the performance of the proposed DRL-based scheme 

in a home network environment by comparing it with several existing approaches. The primary performance 

metrics used for evaluation included energy consumption, latency, reliability, offloading ratio, and system 

resource utilization. We selected baseline algorithms, such as local processing, edge offloading, and cloud 

offloading. 

The performance evaluation of the proposed scheme focuses on key metrics, including energy consumption, 

latency, reliability, offloading ratio, and system resource utilization. Energy consumption was measured as the 

total energy consumed by the devices, with the average and maximum/minimum energy consumption analyzed. 

Latency was assessed by measuring the total time required for task processing, including the average latency 

and the rate of tasks exceeding the latency threshold. Reliability is quantified as the ratio of successfully 

processed tasks and is a critical metric for evaluating system robustness. The offloading ratio analyzes which 

offloading strategy—local, edge, or cloud— is selected for task processing. Finally, system resource utilization 

is evaluated by measuring the CPU and memory usage in edge and cloud servers, providing insight into the 

system load and resource efficiency. Table 2 summarizes the main hyperparameters used in the experiments. 

Table 2. Hyperparameters 

Parameter Description Value 

Learning Rate The rate of updating the model 0.001 

Discount Factor Determines the present value of future rewards 0.99 

Exploration rate Probability of selecting random actions. Higher at the start to 

encourage exploration 

1.0 

Batch Size Number of data points processed per batch 64 

Replay buffer size The size of the memory storing past experiences for learning. Larger 

sizes allow more diverse learning 

50000 

Local Processing (AL) evaluates energy consumption and latency by processing all tasks directly on the 

device. The Edge Offloading method (AE) transmits tasks to edge computing nodes for processing, considering 

network transmission costs and load. The Cloud Offloading method (AC) sends tasks to cloud servers for 

processing, assessing the trade-off between higher processing capabilities and longer latency and guiding the 

offloading decision. 

 

Figure 1. Energy Consumption Over 500 Episodes 
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Figure 1 presents a comparative analysis of the energy consumption of the proposed scheme and several 

benchmark methods. The proposed scheme achieves the lowest overall energy consumption compared with 

the other approaches. This demonstrates the effectiveness of the proposed algorithm in minimizing energy 

consumption through efficient resource utilization during task processing. 

In contrast, local processing exhibited the highest energy consumption, reflecting the significant energy 

expenditure of handling all tasks directly on the device. Although the edge-offloading method consumes less 

energy than local processing, it still demonstrates higher energy usage than cloud offloading and the proposed 

algorithm. Cloud offloading tends to consume slightly more energy than edge offloading but remains more 

energy-efficient than local processing. 

In summary, the proposed scheme outperforms other methods in terms of energy efficiency, highlighting 

its potential for application in resource-constrained environments such as home networks. 

 

Figure 2. Latency Over 500 Episodes 

Figure 2 compares the latency of the proposed scheme with those of the other benchmark methods. The 

proposed scheme consistently demonstrated the lowest latency among the compared methods, indicating its 

effectiveness in minimizing delays by efficiently distributing tasks for processing. Although the edge 

offloading method shows a relatively low latency, it is still slightly higher than the proposed scheme. In 

contrast, cloud offloading exhibits a longer latency than edge offloading, primarily because of the additional 

time required for data transmission and processing on the cloud server. The local processing method has the 

highest latency, which can be attributed to the device handling all tasks internally, resulting in significant delay. 

In conclusion, the proposed scheme outperforms the other methods in terms of latency, making it particularly 

advantageous for latency-sensitive applications. 

 

Figure 3. Success Rate Over 500 Episodes 
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Figure 3 presents a comparison of the success rates of the proposed scheme and several other methods. The 

proposed scheme maintained the highest success rate, consistently achieving an average of over 0.95. This 

demonstrates their stable and reliable performance. In contrast, the local processing method exhibits a 

relatively lower success rate, which is attributed to limited resources and high latency when handling all tasks 

on the device. Edge and cloud offloading methods show intermediate success rates, with some variability 

depending on the availability of edge and cloud resources. 

In conclusion, the proposed scheme achieves a high success rate and provides a more stable performance 

compared to other methods. This suggests that it can significantly enhance reliability and prevent performance 

degradation in resource-constrained home network environments. The performance improvements observed 

with the proposed scheme can also be effectively applied to other IoT environments in which resource 

management is critical. 

6. Conclusion 

This study proposes a DRL-based decision-making scheme to minimize energy consumption and ensure the 

reliability of smart devices within home network environments. By enabling each device to learn the optimal 

offloading decision based on its own state and network conditions, the proposed algorithm demonstrated 

superior energy efficiency and latency performance compared to traditional rule-based offloading methods. 

The performance evaluations indicate that the proposed scheme outperforms existing algorithms in terms of 

energy consumption, latency, and reliability. 

The proposed scheme is expected to adapt flexibly to more complex network- and resource-management 

challenges. Future research will explore solutions to offloading decision problems in more complex network 

scenarios and investigate applications for various services. 
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