DOI QR코드

DOI QR Code

Experimental research on the tensile properties of coal rocks in deep old goafs

  • Ning Jiang (College of Energy and Mining Engineering, Shandong University of Science and Technology) ;
  • Quanbao Su (College of Energy and Mining Engineering, Shandong University of Science and Technology) ;
  • Xia Jiang (Yuloka (Shandong) Mining Technology Co., Ltd.) ;
  • Zhiyou Gao (College of Energy and Mining Engineering, Shandong University of Science and Technology) ;
  • Qingbiao Guo (School of Spatial Informatics and geomatics Engineering, Anhui University of Sciences and Technology) ;
  • Shijie Song (College of Geology& Environment, Xi'an University of Science and Technology) ;
  • Tao Lyu (College of Energy and Mining Engineering, Shandong University of Science and Technology) ;
  • Ke Lyu (School of Mines, China University of Mining and Technology)
  • 투고 : 2024.03.26
  • 심사 : 2024.11.11
  • 발행 : 2024.11.25

초록

The pressurized water conditions of goafs weaken the support of remaining coal and rocks, which causes instability, failure, and sudden ground collapse. The impact of pressure-bearing water and CO2 on the tensile properties of residual coal pillars was explored in old goafs. Coal was analyzed using a pressure-water soaking device, electronic scanning microscope, and 3D full-field strain measurement system. Besides, Brazilian splitting tests were performed. The failure characteristics and energy evolution law of the macro-microscopic structure of coal specimens were analyzed under different soaking conditions-desiccation (DC), CO2 soaking (CS), water-CO2 soaking (WCS), and water soaking (WS). The peak stress of coal specimens and time to reach the peak decreased with varying soaking environments. Stress concentration initially occurred at the water end under the WCS condition, indicating that coal specimens deteriorated more under the pressure-bearing WCS condition compared with the CS condition. Fractures of coal specimens exhibited the highest development under the WS condition. Besides, dissolution was observed at the fractures of coal specimens, with severe failure to their internal microstructures. In conclusion, the instability failure of residual coal pillars is significant in studying the old goafs.

키워드

과제정보

This work was supported by National Natural Science Foundation of China(52374127); the Key supported project of the National Natural Science Foundation of China Regional Innovation and Development Joint Fund (U23A20600); Major Basic Research Project of Shandong Provincial Natural Science Foundation (ZR2024ZD22); Shandong Province Higher Educational Youth Innovation Science and Technology Support Program (2023KJ302).

참고문헌

  1. Akin, I.D. and Likos, W.J. (2017), "Brazilian tensile strength testing of compacted clay", Geotech. Test. J., 40(4), 608-617. https://doi.org/10.1520/GTJ20160180.
  2. Bai, Q.S., Tu, S.H. and Zhang, C. (2016), "DEM investigation of the fracture mechanism of rock disc containing hole(s) and its influence on tensile strength", Theor. Appl. Fract. Mech., 86, 197-216. https://doi.org/10.1016/j.tafmec.2016.07.005.
  3. Bligen, C., Homberger, S. and Weiberg, K. (2019), "Phase-field fracture simulations of the Brazilian splitting test", Int. J. Fract., 220(1), 85-98. https://doi.org/10.1007/s10704-019-00401-w.
  4. Chen, W., Liu, J, Peng, W.Q., Zhao, Y.L., Luo, S.L., Wan, W., Wu, Q.H., Wang, Y.Z., Li, S.N., Tang, X.Y., Zeng, X.T., Wu, X.F., Zhou, Y. and Xie, S.L. (2023), "Aging deterioration of mechanical properties on coal-rock combinations considering hydro-chemical corrosion", Energy., 282. https://doi.org/10.1016/j.energy.2023.128770.
  5. Chen, X.M., Zhang, H.W., Wu, Y.P., Jiao, H.Z., Yang, L.H., Wang, Q.T. and Zhang, W.X. (2022), "Micro-mechanism of uniaxial compression damage of layered cemented backfill in underground mine", Materials, 15(14), 4846. https://doi.org/10.3390/ma15144846.
  6. Chen, Z.Q., He, C., Wu, D., Xu, G.W. and Yang, W.B. (2017), "Fracture evolution and energy mechanism of deep-buried carbonaceous slate", Acta Geotech., 12(6), 1-18. https://doi.org/10.1007/S11440-017-0606-5.
  7. Gan, J.J. (2019), "Experimental study on the microstructure of the lacustrine soft clay after different consolidation deformations based on SEM", IOP Conf. Ser.: Earth Environ. Sci., 304. https://doi.org/10.1088/1755-1315/304/5/052076.
  8. Gong, S., Zhou, L., Wang, Z. and Wang, W. (2021), "Effect of bedding structure on the energy dissipation characteristics of dynamic tensile fracture for water-saturated coal", Geofluids. https://doi.org/10.1155/2021/5592672.
  9. Gopinath, S. and Mehra, A. (2016), "Carbon sequestration during steel production: Modelling the dynamics of aqueous carbonation of steel slag", Chem. Eng. Res. Des., 115, 173-181. https://doi.org/10.1016/j.cherd.2016.09.010.
  10. Guo, W.Y., Zhang, W., Zhang, C.G. and Chen, Y. (2024), "Experimental study on the deformation localisation and acoustic emission characteristics of coal in Brazilian splitting tests", Scientific Reports, 12. https://doi.org/10.1038/s41598-022-10332-7.
  11. Guo, Y.X., Zhao, Y.H., Wang, S.W., Feng, G.R., Zhang, Y.J. and Ran, H.Y. (2021), "Stress-strain-acoustic responses in failure process of coal rock with different height to diameter ratios under uniaxial compression", J. Cent. South Univ.., 28(6), 1724-1736. https://doi.org/10.1007/s11771-021-4729-3.
  12. Heidari, M., Khanlari, G.R., Momeni, A.A. and Jafargholizadeh, H. (2011), "The relationship between geomechanical properties and weathering indices of granitic rocks, Hamedan, Iran", Geomech. Geoeng., 6(1), 59-68. https://doi.org/10.1080/17486021003706580.
  13. Hu, W.Y., Zhou, J.J. and Yan, L.Y. (2010), "Study on environment and safety disasters from abandoned coal mines", J. Xi'an Univ. Sci. Technol., 30(4), 436-440. https://doi.org/10.13800/j.cnki.xakjdxxb.2010.04.014.
  14. Ji, L., Dong, J.H., Kienberger, T., Huang, J., Liu, F., Wang, W., Huang, Y.L. and Gao, H.D. (2023), "Quantitative assessment and development utilization modes of space resources in closed and abandoned mines", Energy Sources, Part A. https://api.semanticscholar.org/CorpusID:260860088.
  15. Komurlu, E., Kesimal, A. and Demir, S. (2016). "Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus", Geomech. Eng., 10(6), 775-791. https://doi.org/10.12989/gae.2016.10.6.775.
  16. Lbishi, G., Genis, M. and Yavuz. M. (2022), "Post-pillars design for safe exploitation at Trepca hard rock mine (Kosovo) based on numerical modeling", Geomech. Eng., 5(28), 463-475. https://doi.org/10.12989/gae.2022.28.5.463.
  17. Li, W., Guan, J., Yan, Y. and Wang J. (2023), "Abandoned coal tunnel survey by multiscale window analysis of Rayleigh waves", J. Appl. Geophys., https://doi.org/10.1016/j.jappgeo.2023.105126.
  18. Li, Y., Guan, J.B., Yan, Y.W. and Wang, J.Q. (2023), "Abandoned coal tunnel survey by multiscale window analysis of Rayleigh waves", J. Appl. Geophys., 215, 105126. https://doi.org/10.1016/j.jappgeo.2023.105126.
  19. Li, Y.Y., Zhang, S.C., Yang, Y.M., Chen, H.R., Li, Z.K. and Ma, Q. (2022), "Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China". Geomech. Eng., 28(6), 613-624. https://doi.org/10.12989/gae.2022.28.6.613.
  20. Liu, S.Q., Wang, H.L., Xu, W.Y., Qu, X. and Xie, W.X. (2020), "Numerical Brazilian split test of pre-cracked granite with randomlydistributed micro-components", Eng. Comput., 37(8), 2641-2657. https://doi.org/10.1108/EC-03-2019-0123.
  21. Lyu, K., Jiang, N., Yin, D.W., Meng, S.Y., Gao, Z.Y. and Lyu, T. (2024), "Deterioration of compressive properties of coal rocks under water and gas coupling", J. Cent. South Univ., 31(2), 475-493. https://doi.org/10.1007/s11771-024-5583-x.
  22. Miehe, C., Hofacker, M. and Welschinger, F. (2010), "A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits", Comput. Method. Appl. M., 199(45-48), 2765-2778. https://doi.org/10.1016/j.cma.2010.04.011.
  23. Morris, A., Silver, D., Ferguson, D. and Thayer, S. (2005), "Towards topological exploration of abandoned mines", ICRA, 2117-2123. https://doi.org/10.1109/robot.2005.1570426.
  24. Qu, J.L. and Tao, H. (2019), "Strength and deformation behavior of Shanghai andesite under various strain rates in uniaxial loading test", Geomech. Geoeng., 16(1), 44-51. https://doi.org/10.1080/17486025.2019.1645364.
  25. Shi, L.Q., Wang, Y., Qiu, M., Gao, W.F. and Zhai P.H. (2019), "Application of three-dimensional high-density resistivity method in roof water advanced detection during working stope mining", Arabian J. Geosci., 12, 464. https://doi.org/10.1007/s12517-019-4586-7.
  26. Song, H., Zhao, Y., Wu, Y., Li, X.H., Gong, Z.X., Sun, Z., Jiang, Y.D. and Guo, Z.H. (2023), "Effect of water on the damage and energy dissipation feature of coal under uniaxial cyclic loading-unloading condition", Energ. Sci. Eng., 11, 4092-4107. https://doi.org/10.1002/ese3.1565.
  27. Vasarhelyi, B. and Van, P. (2006), "Influence of water content on the strength of rock", Eng. Geol., 84(1-2), 70-74. https://doi.org/10.1016/jenggeo.2005.11.011.
  28. Wang, Y.Q., Wang, X., Zhang, J.S., Yang, B.S., Zhu, W.J. and Wang, Z.P. (2022), "Similar experimental study on retaining waterproof coal pillar in composite strata mining", Sci. Rep., 12, 1366. https://doi.org/10.1038/s41598-022-05369-7.
  29. Xia, Z.H., Jiang, N. and Yang, H.S. (2020), "Effect of multiple hole distribution and shape based on particle flow on rocklike failure characteristics and mechanical behavior", Adv. Civ. Eng., 2020. https://doi.org/10.1155/2020/8822225.
  30. Xie, D., Du, Z., Han, C., Han, J., Wei, J. and Yan, J. (2023), "Prediction of the water inrush risk from an overlying separation layer in the thick overburden of a thick coal seam", Sustainability, 15(18), 13988. https://doi.org/10.3390/su151813988.
  31. Yagiz, S. (2008), "Assessment of brittleness using rock strength and density with punch penetration test", Tunn. Undergr. Sp. Tech., 24(1), 66-74. https://doi.org/10.1016/j.tust.2008.04.002.
  32. Yang, S.Q. and Huang, Y.H. (2015), "Particle flow study on strength and meso-mechanism of Braziliansplitting test for jointed rock mass", Acta Mech. Sin., 30(1), 189-201. https://doi.org/10.1007/s10409-014-0076-z.
  33. Yi, Y.R., Lin, Y., Du, Y.C., Bai, S.Q., Ma, Z.L. and Chen, Y.G. (2021), "Accelerated carbonation of ladle furnace slag and characterization of its mineral phase", Constr. Build. Mater., 276, 122235. https://doi.org/10.1016/j.conbuildmat.2020.122235.
  34. Yin, D.W., Ding, Y.S., Jiang, N., Li, F.X., Zhang, J.C. and Xu, H.H. (2022), "Mechanical properties and damage characteristics of coal samples under water immersion pressure", Lithos, 2022(10), 1278783. https://doi.org/10.2113/2022/1278783.
  35. Yin, H., Zhao, H., Xie, D., Sang, S.Z., Shi, Y.L. and Tian, M.H. (2019), "Mechanism of mine water inrush from overlying porous aquifer in Quaternary: a case study in Xinhe Coal Mine of Shandong Province", Arab. J. Geosci., 12(163). https://doi.org/10.1007/s12517-019-4325-0.
  36. Zhang, C., Bai, Q. and Han, P. (2023), "A review of water rock interaction in underground coal mining: problems and analysis", Bull. Eng. Geol. Environ., 82, 157. https://doi.org/10.1007/s10064-023-03142-2.
  37. Zhang, H., Lu, C.P. and Wang, H.Y. (2020), "Numerical investigation on crack development and energy evolution of stressed coal-rock combination", Int. J. Rock Mech. Min. Sci., 133, 104417. https://doi.org/10.1016/j.ijrmms.2020.104417.
  38. Zhang, K., Zhang, Y.C., Zhang, S., Ren, J.X., Zhang, L., Zhang, R.J. and Cui, Y.Q. (2023), "Study on the energy evolution mechanism of coal and rock with impact tendency under different strain rates", Sci. Rep, 13(1). https://doi.org/10.1038/s41598-023-41094-5.
  39. Zhao, K., Gu, S.J., Yan, Y.J., Li, Q., Xiao, W.Q. and Liu, G.Q. (2018), "Rock mechanics characteristics test and optimization of high-efficiency mining in Dajishan tungsten mine", Geofluids, 1-11. https://doi.org/10.1155/2018/8036540.
  40. Zhao, Y.X., Liu, S.M., Jiang, Y.D., Wang, K. and Huang, Y.Q. (2016), "Dynamic tensile strength of coal under dry and saturated conditions", Rock Mech. Rock Eng., 49, 1709-1720. https://doi.org/10.1007/s00603-015-0849-0.