DOI QR코드

DOI QR Code

An evaluation of the technical viability of employing combinations of xanthan gum and clay as an additive in Tunnel Boring Machine (TBM) slurries

  • Sojeong Lee (Korea Standard Construction Center, Korea Institute of Civil engineering and Building Technology) ;
  • Barrie Titulaer (Snowy Hydro) ;
  • Hee-Hwan Ryu (Next generation Transmission and Substation Laboratory, KEPCO Research Institute) ;
  • Ilhan Chang (Department of Civil Systems Engineering, Ajou University)
  • 투고 : 2024.05.09
  • 심사 : 2024.10.14
  • 발행 : 2024.11.25

초록

The issue of problematic disposal of excavated material, commonly referred to as muck, generated during tunnel boring machine (TBM) excavation has emerged as an environmental challenge amidst the escalating demand for sustainable engineering solutions. TBM excavation operations necessitate the use of a slurry to bolster the excavation process and aid in muck conveyance. Typically composed of bentonite, this TBM slurry is conventionally discarded along with the excavated spoils, posing risks to human safety and raising environmental contamination apprehensions. This study aims to explore a novel slurry material as a means to mitigate the toxicity associated with muck disposal. Given the notable adsorption capabilities of bentonite, alternative options such as kaolinite clay and xanthan gum biopolymer are under consideration. Through experimental analysis, various combinations of bentonite clay, kaolinite clay, and xanthan gum are examined to assess their effectiveness in enhancing tunneling performance and optimizing transport properties. The evaluated parameters encompass rheological characteristics, swelling behavior, permeability, suspended viscosity and stickiness. Employing statistical analysis integrated with random weighting factors and the measured properties of each slurry candidate, competitiveness of each slurry candidate is analyzed. The findings of this investigation, accounting for 47.31% priority across all probabilistic scenarios, indicate that a specific blend consisting of bentonite and xanthan gum (2.5% bentonite, 0.75% xanthan gum) demonstrates considerable promise as a substitute for conventional bentonite-based slurries (7.5% bentonite) in TBM excavation applications.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C2091517), and the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant RS-2021-KA163162) and Korea Electric Power Corporation (Grant R23SG01).

참고문헌

  1. Alther, G.R. (1987), "The qualifications of bentonite as a soil sealant", Eng. Geol., 23(3-4), 177-191. https://doi.org/10.1016/0013-7952(87)90089-5.
  2. American Petroleum Institute (2020), "API Specification 13A", Drilling Fluids Materials, Washington, DC, USA.
  3. ASTM (2015), D7175-15: Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer, ASTM International, West Conshohoken, PA. https://doi.org/10.1520/d7175-15.
  4. ASTM (2021), D4546-21: Standard test methods for one-dimensional swell or collapse of soils, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/d4546-21.
  5. Bernard, H., Lau, M., Senthilkumar, M., Sze, Y., Marotta, M., Ow, C. and Senthilnath, G. (2019), "High density slurry for shallow bored tunneling in Singapore", Tunnels and Underground Cities: Engineering and Innovation Meet Archaeology, Architecture and Art. CRC Press, 5350-5359. https://doi.org/10.1201/9780429424441-566.
  6. Blkoor, S.O. and Fattah, K.A. (2013), "The influence of XC-polymer on drilling fluid filter cake properties and formation damage", J. Pet. Environ. Biotechnol., 4(5). https://doi.org/10.4172/2157-7463.1000157.
  7. Broni-Bediako, E. and Amorin, R. (2010), "Effects of drilling fluid exposure to oil and gas workers presented with major areas of exposure and exposure indicators", Res. J. Appl. Sci. Eng. Technol., 2(8), 710-719.
  8. Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1.
  9. Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
  10. Chang, I., Im, J. and Cho, G.C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251.
  11. Chang, I., Im, J., Prasidhi, A K. and Cho, G.C. (2015), "Effects of xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  12. Chang, I., Kwon, Y.M. and Cho, G.C. (2021), "Effect of pore-fluid chemistry on the undrained shear strength of xanthan gum biopolymer-treated clays", J. Geotech. Geoenviron. Eng., 147(11), 06021013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002652.
  13. Chang, I., Kwon, Y.M., Im, J. and Cho, G.C. (2019), "Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation", Can. Geotech. J., 56(8), 1206-1213. https://doi.org/10.1139/cgj2018-0254.
  14. Chang, I., Lee, M., Tran, A. T.P., Lee, S., Kwon, Y.M., Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Transport. Geotech., 24, 100385. http://doi.org/10.1016/j.trgeo.2020.100385.
  15. Cui, J., Xu, W.H., Fang, Y., Tao, L.M. and He, C. (2020a), "Performance of slurry shield tunnelling in mixed strata based on field measurement and numerical simulation", Adv. Mater. Sci. Eng., 2020. https://doi.org/10.1155/2020/6785260.
  16. Cui, W., Liu, D., Song, H.F., Zhang, S.R. and He, S.W. (2020b), "Experimental study of salt-resisting slurry for undersea shield tunnelling", Tunn. Undergr. Sp. Tech., 98, 103322. https://doi.org/10.1016/j.tust/2020.103322.
  17. Dias, T.G.S. and Bezuijen, A. (2015), "TBM pressure models-observations, theory and practice", Proceedings of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering-Geotechnical Synergy in Buenos Aires, Buenos Aires, November.
  18. Dorman, D.C., Foster, M.L., Olesnevich, B., Bolon, B., Castel, A., Sokolsky-Papkov, M. and Mariani, C.L. (2018), "Toxicity associated with ingestion of a polyacrylic acid hydrogel dog pad", J. Veterinary Diagnostic Investigation, 30(5), 708-714. https://doi.org/10.1177/1040638718782583.
  19. Feinendegen, M., Ziegler, M., Spagnoli, G., Fernandez-Steeger, T., and Stanjek, H. (2010), "A new laboratory test to evaluate the problem of clogging in mechanical tunnel driving with EPB-shields", Rock Mech. Civil Environ. Eng., 429-432. https://doi.org/10.1201/b10550-101.
  20. Fritz, P. (2007), "Additives for slurry shields in highly permeable ground", Rock Mech. Rock Eng., 40(1), 81-95. https://doi.org/10.1007/s00603-006-0090-y.
  21. Fu, W., Chen, B., Zhang, K., Liu, J., Sun, X., Huang, B. and Sun, B. (2022), "Rheological Behavior of Hydrate Slurry with Xanthan Gum and Carboxmethylcellulose under High Shear Rate Conditions", Energ. Fuel., 36(6), 3169-3183. https://doi.org/10.1021/acs.energyfuels.1c04359.
  22. Garcia-Ochoa, F., Santos, V., Casas, J., and Gomez, E. (2000), "Xanthan gum: production, recovery, and properties", Biotechnology advances, 18(7), 549-579. https://doi.org/10.1016/s0734-9750(00)00050-1.
  23. Gardner, R.O.N. (2003), "Overview and characteristics of some occupational exposures and health risks on offshore oil and gas installations", Annal. Occupational Hygiene, 47(3), 201-210. https://doi.org/10.1093/annhyg/meg028.
  24. Guerrero, H. (2019), "Inferential statistical analysis of data", Excel Data Analysis: Modeling and Simulation, 179-224. https://doi.org/10.1007/978-3-642-10835-8_6.
  25. Holtz, R.D., Kovacs, W.D. and Sheahan, T.C. (2011), An introduction to geotechnical engineering, Pearson, Upper Saddle River, NJ.
  26. Jain, A.K. (2024), "Exploring the viability of Bentonite-amended blends incorporating marble dust, sand and fly ash for the creation of an environmentally sustainable landfill liner system", Int. J. Geo-Eng., 15(1), 16.
  27. Kalter, N., Feinberg, M. and Carroll, B.J. (1983), "Inferential statistical methods for strengthening the interpretation of laboratory test results", Psychiatry Res., 10(3), 207-216. https://doi.org/10.1016/0165-1781(83)90057-4.
  28. Katzbauer, B. (1998), "Properties and applications of xanthan gum", Polymer Degradation and Stability, 59(1), 81-84. http://doi.org/10.1016/s0141-3910(97)00180-8.
  29. Kelessidis, V.C., Tsamantaki, C., Pasadakis, N., Repouskou, E. and Hamilaki, E. (2007), "Permeability, porosity and surface characteristics of filter cakes from water-bentonite suspensions", WIT T. Eng. Sci., 56, 173-182. https://doi.org/10.2495/MPF070171.
  30. Krause, T. (1987), "Schildvortrieb mit fl€ uussigkeitsund erdgest€ uutzter Ortsbrust", Ph.D. Dissetation, Technical University of Braunschsweig, Braunschsweig, Germany.
  31. Kubilay, S., Gurkan, R., Savran, A. and Sahan, T. (2007), "Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite", Adsorption, 13(1), 41-51. https://doi.org/10.1007/s10450-007-9003-y.
  32. Kwon, Y.M., Cho, G.C., Chung, M. and Chang, I. (2021), "Surface erosion behavior of biopolymer-treated river sand", Geomech. Eng., 25(1), 49-58. https://doi.org/10.12989/gae.2021.25.1.049.
  33. Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M.Z.A. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: an ecofriendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 825. https://doi.org/10.1007/s12665-016-5643-0.
  34. Lee, M., Im, J., Cho, G.C., Ryu, H.H. and Chang, I. (2021), "Interfacial shearing behavior along Xanthan gum biopolymer-treated sand and solid interfaces and its meaning in geotechnical Engineering aspects", Appl. Sci., 11(1), 139. http://doi.org/10.3390/app11010139.
  35. Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
  36. Lee, S., Chung, M., Park, H.M., Song, K.I. and Chang, I. (2019), "Xanthan gum biopolymer as soil-Stabilization binder for road construction using local soil in Sri Lanka", J. Mater. Civil Eng., 31(11), 06019012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002909.
  37. Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
  38. Liu, M., Liao, S., Shi, Z., Liu, H. and Chen, L. (2023), "Analytical study and field investigation on the effects of clogging in slurry shield tunneling", Tunn. Undergr. Sp. Tech., 133, 104957.
  39. Malusis, M.A. and McKeehan, M.D. (2013), "Chemical compatibility of model soil-bentonite backfill containing multiswellable bentonite", J. Geotech. Geoenviron. Eng., 139(2), 189-198. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000729.
  40. Min, F., Zhu, W. and Han, X. (2013), "Filter cake formation for slurry shield tunneling in highly permeable sand", Tunn. Undergr. Sp. Tech., 38, 423-430. https://doi.org/10.1016/j.tust.2013.07.024.
  41. Mooney, M. (1951), "The viscosity of a concentrated suspension of spherical particles", J. Colloid Sci., 6(2), 162-170. http://doi.org/10.1016/0095-8522(51)90036-0.
  42. N'gouamba, E., Essadik, M., Goyon, J., Oerther, T. and Coussot, P. (2021), "Yielding and rheopexy of aqueous xanthan gum solutions", Rheologica Acta, 60(11), 653-660. https://doi.org/10.1007/s00397-021-01293-1.
  43. New Jersey Department of Health (2016), "Hazardous substance face sheet - sulfuric acid", New Jersey Department of Health.
  44. Ong, E.E., O'Byrne, S. and Liow, J.L. (2019), "Yield stress measurement of a thixotropic colloid", Rheologica Acta, 58, 383-401. https://doi.org/10.1007/s00397-019-01154-y.
  45. Ouhadi, V.R., Yong, R.N. and Sedighi, M. (2006), "Influence of heavy metal contaminants at variable pH regimes on rheological behaviour of bentonite", Appl. Clay Sci., 32(3-4), 217-231. https://doi.org/10.1016/j.clay.2006.02.003.
  46. Pang, J., Zhang, X. and Zhang, B. (2023), "Orthogonal experimental study on the construction of a similar material proportional model for simulated coal seam sampling", Processes, 11, 2125.
  47. Park, B., Chang, S.H., Choi, S.W. and Lee, C. (2020), "A study for the estimation of TBM design parameters by statistical analysis", Geotechnics for Sustainable Infrastructure Development, 355-360. https://doi.org/10.1007/978-981-15-2184-3_45.
  48. Park, H., Oh, J.Y., Kim, D. and Chang, S. (2018), "Monitoring and analysis of ground settlement induced by tunnelling with slurry pressure-balanced tunnel boring machine", Adv. Civil Eng., 2018, 5879402. https://doi.org/10.1155/2018/5879402.
  49. Peila, D., Picchio, A., Martinelli, D. and Dal Negro, E. (2016), "Laboratory tests on soil conditioning of clayey soil", Acta Geotechnica, 11(5), 1061-1074. http://doi.org/10.1007/s11440-015-0406-8.
  50. Phillips, G.O. and Williams, P.A. (2000), Handbook of hydrocolloids, CRC Press.
  51. Rankine, B.R. (2007), "Assessment and analysis of Queensland clay behavior", Ph.D. Dissertation, James Cook University, Douglas QLD, Australia.
  52. Rostami, J., Hassanpour, J. and Samadi, H. (2023), "Prediction of earth pressure balance for EPB-TBM using machine learning algorithms", Int. J. Geo-Eng., 14(1), 21.
  53. Shirlaw, J.N., Yan, Z. and Xiao, X.C. (2009), "Assessing face pressures for slurry shield tunneling through partially dewatered weathered gneiss", Underground Singapore.
  54. Simha, R. (1952), "A treatment of the viscosity of concentrated suspensions", J. Appl. Phys., 23(9), 1020-1024. https://doi.org/10.1063/1.1702338.
  55. Sun, B.P., Zhao, B., Cao, H., Wang, J., Mo, D. and Zhang, S. (2018), "Lab study on the effect of cation exchange capacity on slurry performance in slurry shields", Adv. Civil Eng., 2018. https://doi.org/10.1155/2018/2942576.
  56. Swartz, S. (2021), "MDOT Question on slurry containment : slurry systems with excavation by TBM", Michigan Department of Transportation.
  57. The French Association of Tunnels and Underground Space, A. (2005), "AFTES Recommendation - Slurry for use in Slurry Shield TBM".
  58. Thomas, D.G. (1965), "Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles", J. Colloid Sci., 20(3), 267-277. https://doi.org/10.1016/0095-8522(65)90016-4.
  59. Yoon, S., Jeon, J.S., Chang, S., Lee, D.H., Lee, S.R. and Kim, G.Y. (2020), "Characteristics of water suction for a Korean compacted bentonite", Nuclear Technol., 206(3), 514-525. https://doi.org/10.1080/00295450.2019.1632093.
  60. Yoshida, Y., Katsumoto, T., Taniguchi, S., Shimosaka, A., Shirakawa, Y. and Hidaka, J. (2013), "Prediction of viscosity of slurry suspended fine particles using coupled DEM-DNS simulation", Chem. Eng. Transact., 32, 2089-2094. https://doi.org/10.3033/CET1332349.
  61. Zhao, S., Li, S., Wan, Z. and Wang, M. (2021), "Dispersant for reducing mud cakes of slurry shield tunnel boring machine in sticky ground", Adv. Mater. Sci. Eng., 2021, 1-10. https://doi.org/10.1155/2021/5524489.
  62. Zumsteg, R., Puzrin, A.M. and Anagnostou, G. (2016), "Effects of slurry on stickiness of excavated clays and clogging of equipment in fluid supported excavations", Tunn. Undergr. Sp. Tech., 58, 197-208. https://doi.org/10.1016/j.tust.2016.05.006.