DOI QR코드

DOI QR Code

Crushing analysis of aluminum/composite FML conical structures; Numerical and experimental investigation

  • Afshin Tafazoli (Passive Safety Research Lab., Mechanical Engineering Faculty, K.N. Toosi University of Technology) ;
  • Masoud Asgari (Passive Safety Research Lab., Mechanical Engineering Faculty, K.N. Toosi University of Technology)
  • Received : 2023.03.04
  • Accepted : 2024.11.06
  • Published : 2024.11.25

Abstract

Energy absorbers are crucial for absorbing collision energy, and much research is being done continuously to enhance their performance. These structures are widely applicable in automotive crash boxes and other passive safety systems, where efficient energy absorption and structural stability are essential for occupant protection during collisions. Safety and energy consumption concerns have led researchers to make the structures lighter in addition to better energy absorption. The most significant factors influencing the behavior of energy absorbers are the structure's geometry and material. Conical frustum, aluminum, and composite are among the things been raised in the research. In this research, aluminum structures were produced in two versions and with different geometric specifications. In experimental and numerical studies, aluminum and composite-coated samples were compared. The results show that utilizing an aluminum-composite combination can boost specific energy absorption by up to three times while increasing peak force and mean force. Also, by examining the impact of the parameters involved in the structure's energy absorption in the RSM method, the structure's performance has been significantly impacted by the use of composites. It has reduced the dependence of the energy absorption on the structure's geometry, which, along with controlling the process of regular destruction, has increased energy absorption.

Keywords

References

  1. Ab Ghani, A.R., Kee, C.S., Othman, M.Z., Koslan, M.F.S. and Zaidi, A.M.A. (2013), "Impact response of multi-grooved square column", Mod. Appl. Sci., 7(11), 12. https://doi.org/10.5539/mas.v7n11p12.
  2. Abdulqadir, S.F. and Tarlochan, F. (2022), "Composite hat structure design for vehicle safety: Potential application to B-pillar and door intrusion beam", Mater., 15(3), 1084. https://doi.org/10.3390/ma15031084.
  3. Akhavan Attar, A. and Kazemi, M. (2020), "Investigation on crushing behavior of laminated conical absorbers with different arrangements under axial loading", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 234(3), 394-407. https://doi.org/10.1177/1464420719888237.
  4. Al Galib, D. and Limam, A. (2004), "Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes", Thin Wall. Struct., 42(8), 1103-1137. https://doi.org/10.1016/j.tws.2004.03.001.
  5. Attar, A.A. and Kazemi, M. (2022), "Novel geometric arrangement effects on energy absorption of a conical structure with various cross-sections", Thin Wall. Struct., 173, 109005. https://doi.org/10.1016/j.tws.2022.109005.
  6. Azimi, M.B. and Asgari, M. (2016), "Energy absorption characteristics and a meta-model of miniature frusta under axial impact", Int. J. Crashworth., 21(3), 222-230. https://doi.org/10.1080/13588265.2016.1164445.
  7. Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. https://doi.org/10.12989/scs.2018.28.2.179.
  8. Baaskaran, N., Ponappa, K. and Shankar, S. (2019), "Study of the effect of varying shapes of holes in energy absorption characteristics on aluminium circular windowed tubes under quasi-static loading", Struct. Eng. Mech., 70(2), 153-168. https://doi.org/10.12989/sem.2019.70.2.153.
  9. Bai, J. and Zhang, J. (2023), "Analytical and numerical investigations of circular metal foam sandwich tube under free inversion", J. Appl. Mech., 90(10), 101007. https://doi.org/10.1115/1.4062772.
  10. Balaji, G. and Annamalai, K. (2018), "Crushing response of square aluminium column filled with carbon fibre tubes and aluminium honeycomb", Thin Wall. Struct., 132, 667-681. https://doi.org/10.1016/j.tws.2018.07.037.
  11. Chen, D., Sun, G., Meng, M., Li, G. and Li, Q. (2018), "Residual crashworthiness of CFRP structures with pre-impact damage-an experimental and numerical study", Int. J. Mech. Sci., 149, 122-135. https://doi.org/10.1016/j.ijmecsci.2018.08.030.
  12. Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133.
  13. Deb, A., Mahendrakumar, M.S., Chavan, C., Karve, J., Blankenburg, D. and Storen, S. (2004), "Design of an aluminium-based vehicle platform for front impact safety", Int. J. Impact Eng., 30(8-9), 1055-1079. https://doi.org/10.1016/j.ijimpeng.2004.04.016.
  14. Dimas, A., Dirgantara, T., Gunawan, L., Jusuf, A. and Putra, I.S. (2014), "The effects of spot weld pitch to the axial crushing characteristics of top-hat crash box", Appl. Mech. Mater., 660, 578-582. https://doi.org/10.4028/www.scientific.net/AMM.660.578.
  15. El-baky, M.A.A., Allah, M.M.A., Kamel, M. and Abd-Elaziem, W. (2022), "Lightweight cost-effective hybrid materials for energy absorption applications", Scientific Reports, 12(1), 21101. https://doi.org/10.1038/s41598-022-25533-3.
  16. Fard, K.M. and Mahmoudi, M. (2023), "Energy absorption optimization on a sandwich panel with lattice core under the low-velocity impact", Steel Compos Struct., 46(4), 525-538. https://doi.org/10.12989/scs.2023.46.4.525.
  17. Ghasemabadian, M.A., Kadkhodayan, M., Altenhof, W. and Liu, Y. (2021), "An experimental and numerical study on the crush responses and energy absorption characteristics of single-and bi-layer cups under low-velocity impact", Steel Compos Struct., 39(6), 665-683. https://doi.org/10.12989/scs.2021.39.6.665.
  18. Guo, H. and Zhang, J. (2023), "A novel efficient energy absorber with necking-expansion of foam sandwich tubes", J. Appl. Mech., 90(10), 101012. https://doi.org/10.1115/1.4062843.
  19. Guo, H. and Zhang, J. (2023), "Expansion of sandwich tubes with metal foam core under axial compression", J. Appl. Mech., 90(5), 051008. https://doi.org/10.1115/1.4056686.
  20. Guo, H., Yuan, H., Zhang, J. and Ruan, D. (2023), "Review of sandwich structures under impact loadings: Experimental, numerical and theoretical analysis", Thin Wall. Struct., 196, 111541. https://doi.org/10.1016/j.tws.2023.111541.
  21. Hussain, N.N., Regalla, S.P. and Rao, Y.V.D. (2017), "Comparative study of trigger configuration for enhancement of crashworthiness of automobile crash box subjected to axial impact loading", Procedia Eng., 173, 1390-1398. https://doi.org/10.1016/j.proeng.2016.12.198.
  22. Hussein, R.D., Ruan, D. and Lu, G. (2018), "An analytical model of square CFRP tubes subjected to axial compression", Compos. Sci. Technol., 168, 170-178. https://doi.org/10.1016/j.compscitech.2018.09.019.
  23. Kathiresan, M. and Manisekar, K. (2016), "Axial crush behaviours and energy absorption characteristics of aluminium and E-glass/epoxy over-wrapped aluminium conical frusta under low velocity impact loading", Compos. Struct., 136, 86-100. https://doi.org/10.1016/j.compstruct.2015.09.052.
  24. Kazemi, M. and Ahmadi, M. (2024), "Effect of welding process on energy absorption parameters of a square tube with emphasis on the number and position of welding lines", Trans. Ind. Inst. Metal., 77(4), 1151-1160. https://doi.org/10.1007/s12666-023-03080-3.
  25. Kazemi, M. and Serpoush, J. (2021), "Energy absorption parameters of multi-cell thin-walled structure with various thicknesses under lateral loading", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 235(3), 513-526. https://doi.org/10.1177/1464420720973686.
  26. Kazemi, M., Aryaie, M. and Nouri, D. (2024), "Investigation and optimization of energy absorption of squared-section thin-walled structure under lateral dynamic loading", Proc. Inst. Mech. Eng., Part D: J. Automob. Eng., 238(10-11), 3077-3091. https://doi.org/10.1177/09544070231182132.
  27. Liao, J. and Ma, G. (2018), "Energy absorption of the ring stiffened tubes and the application in blast wall design", Struct. Eng. Mech., 66(6), 713-727. https://doi.org/10.12989/sem.2018.66.6.713.
  28. Lu, R., Gao, W., Hu, X., Liu, W., Li, Y. and Liu, X. (2018), "Crushing analysis and crashworthiness optimization of tailor rolled tubes with variation of thickness and material properties", Int. J. Mech. Sci., 136, 67-84. https://doi.org/10.1016/j.ijmecsci.2017.12.020.
  29. Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B. and Papapostolou, D.P. (2005), "On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial compressive loading: Experimental", Compos. Struct., 69(4), 407-420. https://doi.org/10.1016/j.compstruct.2004.07.021.
  30. Mamalis, A.G., Robinson, M., Manolakos, D.E., Demosthenous, G.A., Ioannidis, M.B. and Carruthers, J. (1997), "Crashworthy capability of composite material structures", Compos. Struct., 37(2), 109-134. https://doi.org/10.1016/S0263-8223(97)80005-0.
  31. Meran, A.P., Toprak, T. and Mugan, A. (2014), "Numerical and experimental study of crashworthiness parameters of honeycomb structures", Thin Wall. Struct., 78, 87-94. https://doi.org/10.1016/j.tws.2013.12.012.
  32. Saenz-Dominguez, I., Tena, I., Esnaola, A., Sarrionandia, M., Torre, J. and Aurrekoetxea, J. (2019), "Design and characterisation of cellular composite structures for automotive crash-boxes manufactured by out of die ultraviolet cured pultrusion", Compos. Part B: Eng., 160, 217-224. https://doi.org/10.1016/j.compositesb.2018.10.046.
  33. Sarage, S., Agrewale, M.R.B. and Vora, K.C. (2019), "Design and optimization of crash-box of passenger vehicle to enhance energy absorption (No. 2019-01-1435)", SAE Technical Paper.
  34. Shiravand, A. and Asgari, M. (2019), "Hybrid metal-composite conical tubes for energy absorption; theoretical development and numerical simulation", Thin Wall. Struct., 145, 106442. https://doi.org/10.1016/j.tws.2019.106442.
  35. Song, H.W., Wan, Z.M., Xie, Z.M. and Du, X.W. (2000), "Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes", Int. J. Impact Eng., 24(4), 385-401. https://doi.org/10.1016/S0734-743X(99)00165-7.
  36. Sun, G., Deng, M., Zheng, G. and Li, Q. (2019), "Design for cost performance of crashworthy structures made of high strength steel", Thin Wall. Struct., 138, 458-472. https://doi.org/10.1016/j.tws.2018.07.014.
  37. Szlosarek, R., Bombis, F., Muhler, M. and Kroger, M. (2016), "Development of crash absorbers made of carbon fibre-reinforced plastic based on experimental studies", Mach. Dyn. Res., 39(4), 65-72.
  38. Tao, Y., Wang, Y., He, Q., Xu, D. and Li, L. (2022), "Comparative study and multi-objective crashworthiness optimization design of foam and honeycomb-filled novel aluminum thin-walled tubes", Metal., 12(12), 2163. https://doi.org/10.3390/met12122163.
  39. Tong, Y. and Xu, Y. (2018), "Improvement of crash energy absorption of 2D braided composite tubes through an innovative chamfer external triggers", Int. J. Impact Eng., 111, 11-20. https://doi.org/10.1016/j.ijimpeng.2017.08.002.
  40. Wang, C., Wang, W., Zhao, W., Wang, Y. and Zhou, G. (2018), "Structure design and multi-objective optimization of a novel NPR bumper system", Compos. Part B: Eng., 153, 78-96. https://doi.org/10.1016/j.compositesb.2018.07.024.
  41. Wang, J., Zhang, Y., He, N. and Wang, C.H. (2018), "Crashworthiness behavior of Koch fractal structures", Mater. Des., 144, 229-244. https://doi.org/10.1016/j.matdes.2018.02.035.
  42. Wu, F., Liu, T., Xiao, X., Zhang, Z. and Hou, J. (2019), "Static and dynamic crushing of novel porous crochet-sintered metal and its filled composite tube", Compos. Struct., 209, 830-843. https://doi.org/10.1016/j.compstruct.2018.11.022.
  43. Wu, X. and Zhang, J. (2023), "Axial crushing behaviors of metal density gradient foam-filled square taper tubes: Analytical model and numerical calculation", J. Appl. Mech., 90(9). 1-18. https://doi.org/10.1115/1.4062577.
  44. Xu, X., Zhang, Y., Wang, J., Jiang, F. and Wang, C.H. (2018), "Crashworthiness design of novel hierarchical hexagonal columns", Compos. Struct., 194, 36-48. https://doi.org/10.1016/j.compstruct.2018.03.099.
  45. Yang, H., Lei, H., Lu, G., Zhang, Z., Li, X. and Liu, Y. (2020), "Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression", Compos. Part B: Eng., 198, 108217. https://doi.org/10.1016/j.compositesb.2020.108217.
  46. Zhang, J., Ye, Y., Zhu, Y., Yuan, H., Qin, Q. and Wang, T. (2020), "On axial splitting and curling behaviour of circular sandwich metal tubes with metal foam core", Int. J. Solid. Struct., 202, 111-125. https://doi.org/10.1016/j.ijsolstr.2020.06.021.
  47. Zhang, Z., Sun, W., Zhao, Y. and Hou, S. (2018), "Crashworthiness of different composite tubes by experiments and simulations", Compos. Part B: Eng., 143, 86-95. https://doi.org/10.1016/j.compositesb.2018.01.021.