DOI QR코드

DOI QR Code

New headed reinforcements for RC exterior beam-to-column joints. Experimental and numerical simulation

  • W. Balkis Banu (Department of Civil Engineering, College of Engineering Guindy, Anna University) ;
  • K.P. Jaya (Department of Civil Engineering, College of Engineering Guindy, Anna University)
  • Received : 2024.03.26
  • Accepted : 2024.11.13
  • Published : 2024.11.25

Abstract

In severe intensity seismic zones, the conventional detailing of reinforcement in the exterior beam-to-column joint causes congestion of steel that affects the ease of construction. This article evaluates the behaviour of exterior beam-column joints with different anchorage/connection methods suitable for avoiding steel congestion. Sub-assemblages having six-joint connections were cast and tested under reverse cyclic loading at the tip of the beam under displacement control. Of these, four connections are non-conventional reinforcement detailing were detailed as per ACI 352R-02 and IS-456 along with confinement as per IS-13920, Straight-Headed Bar, X Cross-Headed Bar and the remaining specimens are detailed as a conventional confined specimen. The experimental results from the specimens with different anchorages are compared with the monolithic connection. The study revealed that the X cross-headed bar considerably enhanced the joint's seismic performance in terms of strength, ductility, and energy dissipation. A numerical model (ABAQUS) that considers the nonlinear behaviour of steel and concrete in the beam-column joint is also considered in this study. The results of the experimental tests and the numerical differed by less than 10% on average. The developed headed-bar connection at the beam-column joint is evaluated by calculating the possible shear stress in the joints theoretically and the estimated values lie well within the values specified in standards/codes.

Keywords

Acknowledgement

This Research work is supported by the University Grants Commission (UGC) under the Moulana Azad National Fellowship for Minority Students (Award No: F1-17.1/2017-18/MANF-2017-18-TAM-77935/(SA-III/We bsite)), and the test is conducted at Structural Dynamics Laboratory, Anna University, Chennai. The authors are thankful to the University and the funding agency for their support.

References

  1. ABAQUS/CAE User's Manual (2014), Dassault Systemes, Simulia Corp. Providence. 
  2. ACI (American Concrete Institute) ACI 318-08 (2008), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, U.S.A. 
  3. ACI (American Concrete Institute) ACI 352R (2002), Recommendations for the Design of Beam-Column Joints in Monolithic Reinforced Concrete Structures, Journal of the American Concrete Institute, 82(3), 266-283. 
  4. Alameddine, F. and Eshani, M.R. (1991), "High strength RC connections subjected to inelastic cyclic loading", J. Struct. Eng., 117(3), 829-850. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:3(829). 
  5. Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in plastic damage model for RC structures", Eng. Struct., 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022. 
  6. Ashtiani, M.S., Dhakal, R.P. and Scott, A.N. (2014), "Seismic performance of high-strength self-compacting concrete in reinforced concrete beam-column joints", J. Struct. Eng., 140(5), 04014002. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000973. 
  7. Bakir, P.G. (2003), "Seismic resistance and mechanical behavior of exterior beam-column joints with crossed inclined bars", Struct. Eng. Mech., 16(4), 493-517. https://doi.org/10.12989/sem.2003.16.4.493. 
  8. Balkis Banu, W. and Jaya, K.P. (2024), "A study on exterior cross hed joint with alternative ductile detailing", J. Struct. Eng. Madras, 49(3), 223-233. 
  9. Balkis Banu, W., Jaya, K.P. and Vidjeapriya, R. (2023), "Seismic behaviour of exterior beam-column using with steel fibre-reinforced concrete under reverse cyclic loading", Arab. J. Sci. Eng., 48(4), 4635-4655. https://doi.org/10.1007/s13369-022-07139-z. 
  10. Belarbi, A., Zhang, L.X. and Hsu, T.T.C. (1995), "Constitutive laws of RC membrane elements", Proceedings of the 11th World Conference on Earthquake Engineering, Paper No. 1206. 
  11. Bentz, E.C. (2005), "Explaining the riddle of tension stiffening models for shear panel experiments", J. Struct. Eng., 131(9), 1422-1425. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:9(1422). 
  12. Bindhu, K.R and Jaya, K.P. (2010), "Strength and behavior of exterior beam-column joints with diagonal cross bracing bars", Asia. J. Civil Eng., 11(3), 397-410. 
  13. Bureau of Indian Standards (BIS) (2000), Indian Standard Code of Practice for Plain and Reinforced Concrete, New Delhi, India. 
  14. Bureau of Indian Standards (BIS) (2013), Indian Standard Ordinary Portland Cement, 53 Grade-Specification, New Delhi, India. 
  15. Bureau of Indian Standards (BIS) (2016), Code of Practice for Criteria for Earthquake-Resistant Design of Structures: Part 1: General Provisions and Buildings, New Delhi, India. 
  16. Bureau of Indian Standards (BIS) (2016), Code of Practice for Ductile Design and Detailing of Reinforced Concrete Structures Subjected to Seismic Forces, New Delhi, India. 
  17. Bureau of Indian Standards (BIS) (2016), Indian Standard Coarse and Fine Aggregate-Specification, New Delhi, India. 
  18. Cheok, G.S. and Lew, H.S. (1993), "Model precast concrete beam-to-column connections subjected to cyclic loading", PCI J., 38(4), 80-92. 
  19. Chithra, R., Thenmozhi, R. and Ravathi, M.C. (2011), "Flexural ductility of prefabricated cage reinforced steel- concrete composite beams", Asia. J. Civil Eng. (Build. Hous.), 12(6), 719-729. 
  20. Clough, R. and Penzien, J. (1975), Dynamics of Structures, J. Wiley and Sons, New York. 
  21. Hongyu, C., Hongguang, Z., Hongqiang, M., Jingchong, F., Yadong, N. and Qingjie, H. (2020), "Numerical analysis about the influence of column lateral friction torque on seismic performance of IMS system joints", Alex. Eng. J., 59(1), 165-176. https://doi.org/10.1016/j.aej.2019.12.019. 
  22. Kang, T.H.K., Shin, M., Mitra, N. and Bonacci, J.F. (2009), "Seismic design of reinforced concrete beam-column joints with headed bars", ACI Struct. J., 106(6), 868-877. https://doi.org/10.14359/51663188. 
  23. Kotsovou, G. and Mouzakis, H. (2012), "Exterior RC beam-column joints: New design approach", Eng. Struct., 41, 307-319. https://doi.org/10.1016/j.engstruct.2012.03.049. 
  24. Lee, H.J. and Yu, S.Y. (2009), "Cyclic response of exterior beam-column joints with different anchorage methods", ACI Struct. J., 106(3), 329-339. https://doi.org/10.14359/56497. 
  25. Long, X. and Lee, C.K. (2015), "Modelling of two-dimensional reinforced concrete beam-column joints subjected to monotonic loading", Adv. Struct. Eng., 18(5), 1461-1474. https://doi.org/10.4028/www.scientific.net/KEM.662.81. 
  26. Lu, X., Urukap, T.H., Li, S. and Lin, F. (2012), "Seismic behavior of interior RC beam-column joints with additional bars under cyclic loading", Earthq. Struct., 3(1), 37-57. https://doi.org/10.12989/eas.2012.3.1.037. 
  27. Lubliner, J. (1989), "A plastic damage model for concrete", Int. J. Solid Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4. 
  28. Mo, Y.L. and Wang, S.J. (2000), "Seismic behavior of RC columns with various tie configurations", J. Struct. Eng., 126(10), 1122-1130. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1122). 
  29. Mosallam, A., Allam, K. and Salama, M. (2019), "Analytical and numerical modelling of RC beam-column joints retrofitted with FRP laminates and hybrid composite connectors", Compos. Struct., 214. 486-503. https://doi.org/10.1016/j.compstruct.2019.02.032. 
  30. Murty, C.V.R., Rai, D.C., Bajpai, K.K. and Jain, S.K. (2004), "Effectiveness of reinforcement details in exterior reinforced concrete beam-column joints for earthquake resistance", ACI Struct. J., 100(2), 149-156. 
  31. Najafgholipour, M.A., Dehghan, S.M., Dooshabi, A. and Niroomandi, A. (2017), "Finite element analysis of reinforced concrete beam-column connections with governing joint shear failure mode", Lat. Am. J. Solid Struct., 14(7), 1200-1225. https://doi.org/10.1590/1679-78253682. 
  32. Park, R. (1988), "Ductility evaluation from laboratory and analytical testing", Proceedings of the 9th World Conference on Earthquake Engineering, 8, 605-616. 
  33. Park, R. (1989), "Evaluation of ductility of structures and structural sub-assemblages from laboratory testing", Bull. NZ Nat. Soc. Earthq. Eng., 22(3), 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166. 
  34. Park, R. and Paulay, T. (1975), Reinforced Concrete Structures, Wiley, New York. 
  35. Paulay, T. and Scarpas, A. (1981), "The behaviour of exterior beam-column joints", Bull. NZ Nat. Soc. Earthq. Eng., 14(3), 131-144. https://doi.org/10.5459/bnzsee.14.3.131-144. 
  36. Rajagopal, S. and Prabavathy, S. (2015), "Investigation on the seismic behavior of exterior beam-column joint using T-type mechanical anchorage with hair-clip bar", J. King Saud Univ.-Eng. Sci., 27(2), 142-152. https://doi.org/10.1016/j.jksues.2013.09.002. 
  37. Saqan, E. (2014), "Evaluation of ductile beam-column connections for use in seismic-resistant precast frames", Ph.D. Thesis, University of Texas, Austin, TX. 
  38. Sezen, H. and Shamsai, M. (2008), "High-strength concrete columns reinforced with prefabricated cage system", J. Struct. Eng., 134(5), 750-757. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(750). 
  39. Singhal, S., Chourasia, A., Panigrahi, S.K. and Kajale, Y. (2021), "Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane loading", Front. Struct. Civil Eng., 15(5), 1128-1143. https://doi.org/10.1007/s11709-021-0753-5. 
  40. Surumi, R.S., Jaya, K.P. and Greeshma, S. (2015), "Modelling and assessment of shear wall-flat slab joint region in tall structures", Arab. J. Sci. Eng., 40, 2201-2217. https://doi.org/10.1007/s13369-015-1720-z. 
  41. Tsonos, A.G. (2005), "Cyclic load behavior of reinforced concrete beam-column sub assemblages of modern structures", WIT Trans. Built Environ., 81, 439-449. https://doi.org/10.2495/ERES050421.