DOI QR코드

DOI QR Code

Prediction for the shear capacity of unbonded PRC beam with high strength spiral stirrups

  • Hao Zhang (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Wei Huang (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Bolong Liu (School of Civil Engineering, Shaoxing University) ;
  • Qingning Li (School of Civil Engineering, Xi'an University of Architecture and Technology)
  • Received : 2023.09.08
  • Accepted : 2024.11.11
  • Published : 2024.11.25

Abstract

To investigate the mechanical behavior of unbonded prestressed reinforced concrete (PRC) beam with high-strength spiral stirrups, the shear capacity formula of the beam was proposed in this study based on modified variable angle truss and arch models. Considering the effect of the spiral stirrups and unbonded tendons, the theoretical formula of the shear capacity of the beam was derived. Furthermore, the coefficients related to the formula, such as the equivalent angle and stress of spiral stirrups, the ratio of shear span to effective depth, and the concrete compression zone depth of the arch model were determined. The complicated theoretical formula was further simplified for ease of use by engineers. In addition, the finite element model of the PRC beam was established and verified by test data. The additional FE model of PRC beam with spiral stirrups was established and parametric analysis was carried out. Finally, the proposed formula was validated by numerical results of the beam with spiral stirrups. The calculated values of the formula are in good agreement with the numerical simulation data. This study may enrich the understanding of the shear capacity of the unbonded PRC beam with high-strength spiral stirrups.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (52378193), National Natural Science Foundation Youth Program (52308203), Shaanxi Province and Technology Plan Project (S2023-JC-QN-0573), Shaanxi Province technology innovation guidance special project (2023GXLH-054), and Key R&D projects of Shaanxi Province-Key industry innovation project (2020ZDLNY06-04, 2021ZDLSF05-11).

References

  1. ABAQUS User's Manual (2014), Version 6.14, Dassault Systemes Simulia Co., Providence, RI, USA.
  2. Abuodeh, O. and Abed, F. (2019), "A finite element model of a UHPC beam reinforced with HSS bars", IEEE 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, October.
  3. ACI Committee 318 (2008), Building Code Requirements for Structural Concrete (ACI318M-08) and Commentary, American Concrete Institute, Farmington Hills, MI.
  4. Ahmad, S., Bahij, S., Al-Osta, M.A., Adekunle, S.K. and Al-Dulaijan, S.U. (2019), "Shear behavior of ultrahigh-performance concrete beams reinforced with high-strength steel bars", ACI Struct. J., 116(4), 3-14. http://doi.org/10.14359/51714484.
  5. Aldabagh, S., Abed, F. and Yehia, S. (2019), "Flexural response of RC beams reinforced with HSS bars using FEA", IEEE Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, March-April.
  6. Al-Saawani, M.A., El-Sayed, A.K. and Al-Negheimish, A.I. (2020), "Effect of shear-span/depth ratio on debonding failures of FRP-strengthened RC beams", J. Build. Eng., 32, 101771. https://doi.org/10.1016/j.jobe.2020.101771.
  7. Aoyama, H. (2001), Design of Modern High-Rise Reinforced Concrete Structures, Imperial College Press, London.
  8. Barbosa, A.R., Trejo, D. and Nielson, D.R. (2018), "Performance of shear specimens reinforced with high-strength reinforcing bars", ACI Struct. J., 115(6), 1529-1539. http://doi.org/10.14359/51710885.
  9. Bentz, E.C., Vecchio, F.J. and Collins, M.P. (2006), "Simplified modified compression field theory of calculating shear strength of reinforced concrete elements", ACI Struct. J., 103(4), 614-624.
  10. Bernardo, L., Filho, B. and Horowitz, B. (2020), "Refinement of the rotating-angle softened truss model with efficient solution procedure for RC membranes", Eng. Struct., 213, 110552. https://doi.org/10.1016/j.engstruct.2020.110552.
  11. Brena, S.F. and Roy, N.C. (2009), "Evaluation of load transfer and strut strength of deep beams with short longitudinal bar anchorages", ACI Struct. J., 106(5), 678-689. https://doi.org/10.14359/51663108.
  12. BS EN 1992-1-1: Eurocode 2 (2004), Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization (CEN), Brussels.
  13. Campione, G., Colajanni, P. and Monaco, A. (2015), "Analytical evaluation of steel-concrete composite trussed beam shear capacity", Mater. Struct., 49, 3159-3176. https://doi.org/10.1617/s11527-015-0711-6.
  14. CEB-FIP Model Code 1990 (1993), Thomas Telford Services Ltd., London.
  15. CECS356 (2013), Technical Specification for High-Strength Stirrup Concrete Structure, China Association for Engineering Construction Standardization, Beijing, China.
  16. Chidambaram, R.S. and Agarwal, P. (2015), "Flexural and shear behavior of geo-grid confined RC beams with steel fiber reinforced concrete", Constr. Build. Mater., 78(1), 271-280. https://doi.org/10.1016/j.conbuildmat.2015.01.021.
  17. Cladera, A., Mari, A., Bairan, J., Ribas, C., Oller, E. and Duarte, N. (2016), "The compression chord capacity model for the shear design and assessment of reinforced and prestressed concrete beams", Struct. Concrete, 17(6), 1017-1032. https://doi.org/10.1002/suco.201500214 .
  18. Devine, R.D., Barbachyn, S.M., Thrall, A.P. and Kurama, Y.C. (2018), "Experimental evaluation of deep beams with high-strength concrete and high-strength reinforcing bar", ACI Struct. J., 115(4), 1023-1036. http://doi.org/10.14359/51702229.
  19. Domenico, D.D. and Ricciardi, G. (2019), "Shear strength of RC beams with stirrups using an improved eurocode 2 truss model with two variable-inclination compression struts", Eng. Struct., 198, 109359. https://doi.org/10.1016/j.engstruct.2019.109359.
  20. Fukuhara, M. and Kuroe, S. (1982), "Experimental study on reinforcing effect of high strength shear reinforcement in reinforced concrete members", Papers of Japanese Institute of Architecture, 320, 12-20.
  21. GB 50010 (2010), Code for the Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
  22. Hamzenezhadi, A., Sharbatdar, M.K. and Kheyroddin, A. (2021), "Experimental investigation of dimensional ratio effects on shear capacity of high-performance cementitious composites deep beams", J. Build. Eng., 43(2), 102862. https://doi.org/10.1016/j.jobe.2021.102862.
  23. Heckmann, C.P. (2008), "Effects of increasing the allowable compressive stress at release on the shear strength of prestressed concrete girders", Master's Thesis, The University of Texas at Austin, Austin.
  24. Japanese Institute of Architecture (2010), Calculation Standards for Reinforced Concrete Structures, Japanese Institute of Architecture, Japan.
  25. Kim, W. and Jeong, J. (2011), "Decoupling of arch action in shear-critical reinforced concrete beams", ACI Struct. J., 108(4), 395-404.
  26. Lee, J.D. and Mander, J.B. (2022), "Unified truss-arch model for the analysis of bending-shear interaction in reinforced concrete members", J. Struct. Eng., 148(7), 04022074. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003380.
  27. Lee, J.Y., Choi, I.J. and Kim, S.W. (2011), "Shear behavior of reinforced concrete beams with high-strength stirrups", ACI Struct. J., 108(5), 620-629. http://doi.org/10.14359/51683219.
  28. Lee, J.Y., Lee, D.H., Lee, J.E. and Choi, S.H. (2015), "Shear behavior and diagonal crack width for reinforced concrete beams with high-strength shear reinforcement", ACI Struct. J., 112(3), 323-333. http://doi.org/10.14359/51687422.
  29. Lee, J.Y., Lim, H.S. and Kim, C. (2020), "Structural behaviour of prestressed concrete beams with high-strength stirrups", Eur. J. Environ. Civil Eng., 3, 1-16. https://doi.org/10.1080/19648189.2020.1731713.
  30. Lee, S.C., Cho, J.Y. and Oh, B.H. (2010), "Shear behavior of large-scale post-tensioned girders with small shear span-depth ratio", ACI Struct. J., 107(2), 137-145. http://doi.org/10.14359/51663529.
  31. Machado, G.G., Filho, A.C., Lazzari, P.M., Lazzari, B.M. and Pacheco, A.R. (2023), "Numerical simulation by the finite element method of the constructive steps of a precast prestressed segmental bridge", Struct. Eng. Mech., 85(2), 163. https://doi.org/10.12989/sem.2023.85.2.163.
  32. Morsch, E. and Der, E. (1908), Seine Theorie und Anwendung, Stuttgart, Wittwer.
  33. Olalusi, O.B. and Viljoen, C. (2019), "Assessment of simplified and advanced models for shear resistance prediction of stirrup-reinforced concrete beams", Eng. Struct., 186, 96-109. https://doi.org/10.1016/j.engstruct.2019.01.130.
  34. Park, R. and Paulay, T. (1974), Reinforced Concrete Structures, A Wiley-Interscience Publication, New Zealand.
  35. Peera, I. and Oukaili, N. (2021), "Experimental study on the behaviours of post-tensioned concrete members with unbonded tendons", 4th International Conference on Engineering Sciences (ICES 2020), Kerbala, Iraq, December. https://doi.org/10.1088/1757-899X/1067/1/012033.
  36. Publisher of the 1984 edition of Nielsen's book is Englewood Cliffs (1984), Prentice-Hall, N.J.
  37. Ritter, W. and Bauweise, H.D. (1899), "Construction techniques of hennebique", Schweizerische Bauzeitung, 33(7), 59-61.
  38. Saha, P. and Meesaraganda, L.V. (2019), "Experimental investigation of reinforced SCC beam-column joint with rectangular spiral reinforcement under cyclic loading", Constr. Build. Mater., 201, 171-185. https://doi.org/10.1016/j.conbuildmat.2018.12.192.
  39. Scott, R.M., Mander, J.B. and Bracci, J.M. (2012). "Compatibility strut-and-tie modeling: Part I-formulation", ACI Struct. J., 109(5), 635-644. https://doi.org/10.14359/51684041.
  40. Shatarat, N., Katkhuda, H., Abdel-Jaber, M. and Alqam, M. (2016), "Experimental investigation of reinforced concrete beams with spiral reinforcement in shear", Constr. Build. Mater., 125, 585-594. http://doi.org/10.1016/j.conbuildmat.2016.08.070.
  41. Shatarat, N., Mahmoud, H.M. and Katkhuda, H. (2018), "Shear capacity investigation of self compacting concrete beams with rectangular spiral reinforcement", Constr. Build. Mater., 189, 640-648. https://doi.org/10.1016/j.conbuildmat.2018.09.046.
  42. Shimono, K., Kashiwabara, S., Sato, T. and Matsuoka, S. (1999), "Experimental study on shear strength evaluation in reinforced concrete beams using high-strength materials", JCI Proceed., 21(3), 175-180.
  43. Sidoroff, F. (1981), "Description of anisotropic damage application to elasticity", Physical Non-Linearities in Structural Analysis, Springer, Berlin, Heidelberg.
  44. Toklu, Y.C., Bekdas, G. and Temur, R. (2013), "Analysis of trusses by total potential optimization method coupled with harmony search", Struct. Eng. Mech., 45(2), 183-199. https://doi.org/10.12989/sem.2013.45.2.183.
  45. Walraven, J., Belletti, B. and Esposito, R. (2013), "Shear capacity of normal, lightweight, and high strength concrete beams according to Model Code 2010. I: Experimental results versus analytical model results", J. Struct. Eng., 139(9), 1593-1599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000742.
  46. Wang, J., Liu, J., Zhang, G. and Jia, Y. (2018), "Method for computing the shear capacity of prestressed reinforced concrete beams based on truss-arch model", Int. J. Struct. Integrity, 9(5), 574-586. https://doi.org/10.1108/IJSI-09-2017-0052.
  47. Wibowo, L.S.B., Cheng, M.Y., Huang, F.C. and Tai, T.Y. (2017), "Effectiveness of high-strength hoops in high-strength flexural members", ACI Struct. J., 114(4), 887-897. http://doi.org/10.14359/51689620.
  48. Zhang, Y., Ma, G., Wang, Z., Niu, Z., Liu, Y. and Li, Z. (2018), "Shear behavior of reinforced glazed hollow bead insulation concrete beams", Constr. Build. Mater., 174, 81-95. https://doi.org/10.1016/j.conbuildmat.2018.04.090.
  49. Zheng, A., Li, S., Zhang, D.F. and Yan, Y.H. (2021), "Shear strengthening of RC beams with corrosion-damaged stirrups using FRP grid-reinforced ECC matrix composites", Compos. Struct., 272(1), 114229. https://doi.org/10.1016/j.compstruct.2021.114229.