Acknowledgement
This work was supported by National Natural Science Foundation of China (52378193), National Natural Science Foundation Youth Program (52308203), Shaanxi Province and Technology Plan Project (S2023-JC-QN-0573), Shaanxi Province technology innovation guidance special project (2023GXLH-054), and Key R&D projects of Shaanxi Province-Key industry innovation project (2020ZDLNY06-04, 2021ZDLSF05-11).
References
- ABAQUS User's Manual (2014), Version 6.14, Dassault Systemes Simulia Co., Providence, RI, USA.
- Abuodeh, O. and Abed, F. (2019), "A finite element model of a UHPC beam reinforced with HSS bars", IEEE 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, October.
- ACI Committee 318 (2008), Building Code Requirements for Structural Concrete (ACI318M-08) and Commentary, American Concrete Institute, Farmington Hills, MI.
- Ahmad, S., Bahij, S., Al-Osta, M.A., Adekunle, S.K. and Al-Dulaijan, S.U. (2019), "Shear behavior of ultrahigh-performance concrete beams reinforced with high-strength steel bars", ACI Struct. J., 116(4), 3-14. http://doi.org/10.14359/51714484.
- Aldabagh, S., Abed, F. and Yehia, S. (2019), "Flexural response of RC beams reinforced with HSS bars using FEA", IEEE Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, March-April.
- Al-Saawani, M.A., El-Sayed, A.K. and Al-Negheimish, A.I. (2020), "Effect of shear-span/depth ratio on debonding failures of FRP-strengthened RC beams", J. Build. Eng., 32, 101771. https://doi.org/10.1016/j.jobe.2020.101771.
- Aoyama, H. (2001), Design of Modern High-Rise Reinforced Concrete Structures, Imperial College Press, London.
- Barbosa, A.R., Trejo, D. and Nielson, D.R. (2018), "Performance of shear specimens reinforced with high-strength reinforcing bars", ACI Struct. J., 115(6), 1529-1539. http://doi.org/10.14359/51710885.
- Bentz, E.C., Vecchio, F.J. and Collins, M.P. (2006), "Simplified modified compression field theory of calculating shear strength of reinforced concrete elements", ACI Struct. J., 103(4), 614-624.
- Bernardo, L., Filho, B. and Horowitz, B. (2020), "Refinement of the rotating-angle softened truss model with efficient solution procedure for RC membranes", Eng. Struct., 213, 110552. https://doi.org/10.1016/j.engstruct.2020.110552.
- Brena, S.F. and Roy, N.C. (2009), "Evaluation of load transfer and strut strength of deep beams with short longitudinal bar anchorages", ACI Struct. J., 106(5), 678-689. https://doi.org/10.14359/51663108.
- BS EN 1992-1-1: Eurocode 2 (2004), Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization (CEN), Brussels.
- Campione, G., Colajanni, P. and Monaco, A. (2015), "Analytical evaluation of steel-concrete composite trussed beam shear capacity", Mater. Struct., 49, 3159-3176. https://doi.org/10.1617/s11527-015-0711-6.
- CEB-FIP Model Code 1990 (1993), Thomas Telford Services Ltd., London.
- CECS356 (2013), Technical Specification for High-Strength Stirrup Concrete Structure, China Association for Engineering Construction Standardization, Beijing, China.
- Chidambaram, R.S. and Agarwal, P. (2015), "Flexural and shear behavior of geo-grid confined RC beams with steel fiber reinforced concrete", Constr. Build. Mater., 78(1), 271-280. https://doi.org/10.1016/j.conbuildmat.2015.01.021.
- Cladera, A., Mari, A., Bairan, J., Ribas, C., Oller, E. and Duarte, N. (2016), "The compression chord capacity model for the shear design and assessment of reinforced and prestressed concrete beams", Struct. Concrete, 17(6), 1017-1032. https://doi.org/10.1002/suco.201500214 .
- Devine, R.D., Barbachyn, S.M., Thrall, A.P. and Kurama, Y.C. (2018), "Experimental evaluation of deep beams with high-strength concrete and high-strength reinforcing bar", ACI Struct. J., 115(4), 1023-1036. http://doi.org/10.14359/51702229.
- Domenico, D.D. and Ricciardi, G. (2019), "Shear strength of RC beams with stirrups using an improved eurocode 2 truss model with two variable-inclination compression struts", Eng. Struct., 198, 109359. https://doi.org/10.1016/j.engstruct.2019.109359.
- Fukuhara, M. and Kuroe, S. (1982), "Experimental study on reinforcing effect of high strength shear reinforcement in reinforced concrete members", Papers of Japanese Institute of Architecture, 320, 12-20.
- GB 50010 (2010), Code for the Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
- Hamzenezhadi, A., Sharbatdar, M.K. and Kheyroddin, A. (2021), "Experimental investigation of dimensional ratio effects on shear capacity of high-performance cementitious composites deep beams", J. Build. Eng., 43(2), 102862. https://doi.org/10.1016/j.jobe.2021.102862.
- Heckmann, C.P. (2008), "Effects of increasing the allowable compressive stress at release on the shear strength of prestressed concrete girders", Master's Thesis, The University of Texas at Austin, Austin.
- Japanese Institute of Architecture (2010), Calculation Standards for Reinforced Concrete Structures, Japanese Institute of Architecture, Japan.
- Kim, W. and Jeong, J. (2011), "Decoupling of arch action in shear-critical reinforced concrete beams", ACI Struct. J., 108(4), 395-404.
- Lee, J.D. and Mander, J.B. (2022), "Unified truss-arch model for the analysis of bending-shear interaction in reinforced concrete members", J. Struct. Eng., 148(7), 04022074. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003380.
- Lee, J.Y., Choi, I.J. and Kim, S.W. (2011), "Shear behavior of reinforced concrete beams with high-strength stirrups", ACI Struct. J., 108(5), 620-629. http://doi.org/10.14359/51683219.
- Lee, J.Y., Lee, D.H., Lee, J.E. and Choi, S.H. (2015), "Shear behavior and diagonal crack width for reinforced concrete beams with high-strength shear reinforcement", ACI Struct. J., 112(3), 323-333. http://doi.org/10.14359/51687422.
- Lee, J.Y., Lim, H.S. and Kim, C. (2020), "Structural behaviour of prestressed concrete beams with high-strength stirrups", Eur. J. Environ. Civil Eng., 3, 1-16. https://doi.org/10.1080/19648189.2020.1731713.
- Lee, S.C., Cho, J.Y. and Oh, B.H. (2010), "Shear behavior of large-scale post-tensioned girders with small shear span-depth ratio", ACI Struct. J., 107(2), 137-145. http://doi.org/10.14359/51663529.
- Machado, G.G., Filho, A.C., Lazzari, P.M., Lazzari, B.M. and Pacheco, A.R. (2023), "Numerical simulation by the finite element method of the constructive steps of a precast prestressed segmental bridge", Struct. Eng. Mech., 85(2), 163. https://doi.org/10.12989/sem.2023.85.2.163.
- Morsch, E. and Der, E. (1908), Seine Theorie und Anwendung, Stuttgart, Wittwer.
- Olalusi, O.B. and Viljoen, C. (2019), "Assessment of simplified and advanced models for shear resistance prediction of stirrup-reinforced concrete beams", Eng. Struct., 186, 96-109. https://doi.org/10.1016/j.engstruct.2019.01.130.
- Park, R. and Paulay, T. (1974), Reinforced Concrete Structures, A Wiley-Interscience Publication, New Zealand.
- Peera, I. and Oukaili, N. (2021), "Experimental study on the behaviours of post-tensioned concrete members with unbonded tendons", 4th International Conference on Engineering Sciences (ICES 2020), Kerbala, Iraq, December. https://doi.org/10.1088/1757-899X/1067/1/012033.
- Publisher of the 1984 edition of Nielsen's book is Englewood Cliffs (1984), Prentice-Hall, N.J.
- Ritter, W. and Bauweise, H.D. (1899), "Construction techniques of hennebique", Schweizerische Bauzeitung, 33(7), 59-61.
- Saha, P. and Meesaraganda, L.V. (2019), "Experimental investigation of reinforced SCC beam-column joint with rectangular spiral reinforcement under cyclic loading", Constr. Build. Mater., 201, 171-185. https://doi.org/10.1016/j.conbuildmat.2018.12.192.
- Scott, R.M., Mander, J.B. and Bracci, J.M. (2012). "Compatibility strut-and-tie modeling: Part I-formulation", ACI Struct. J., 109(5), 635-644. https://doi.org/10.14359/51684041.
- Shatarat, N., Katkhuda, H., Abdel-Jaber, M. and Alqam, M. (2016), "Experimental investigation of reinforced concrete beams with spiral reinforcement in shear", Constr. Build. Mater., 125, 585-594. http://doi.org/10.1016/j.conbuildmat.2016.08.070.
- Shatarat, N., Mahmoud, H.M. and Katkhuda, H. (2018), "Shear capacity investigation of self compacting concrete beams with rectangular spiral reinforcement", Constr. Build. Mater., 189, 640-648. https://doi.org/10.1016/j.conbuildmat.2018.09.046.
- Shimono, K., Kashiwabara, S., Sato, T. and Matsuoka, S. (1999), "Experimental study on shear strength evaluation in reinforced concrete beams using high-strength materials", JCI Proceed., 21(3), 175-180.
- Sidoroff, F. (1981), "Description of anisotropic damage application to elasticity", Physical Non-Linearities in Structural Analysis, Springer, Berlin, Heidelberg.
- Toklu, Y.C., Bekdas, G. and Temur, R. (2013), "Analysis of trusses by total potential optimization method coupled with harmony search", Struct. Eng. Mech., 45(2), 183-199. https://doi.org/10.12989/sem.2013.45.2.183.
- Walraven, J., Belletti, B. and Esposito, R. (2013), "Shear capacity of normal, lightweight, and high strength concrete beams according to Model Code 2010. I: Experimental results versus analytical model results", J. Struct. Eng., 139(9), 1593-1599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000742.
- Wang, J., Liu, J., Zhang, G. and Jia, Y. (2018), "Method for computing the shear capacity of prestressed reinforced concrete beams based on truss-arch model", Int. J. Struct. Integrity, 9(5), 574-586. https://doi.org/10.1108/IJSI-09-2017-0052.
- Wibowo, L.S.B., Cheng, M.Y., Huang, F.C. and Tai, T.Y. (2017), "Effectiveness of high-strength hoops in high-strength flexural members", ACI Struct. J., 114(4), 887-897. http://doi.org/10.14359/51689620.
- Zhang, Y., Ma, G., Wang, Z., Niu, Z., Liu, Y. and Li, Z. (2018), "Shear behavior of reinforced glazed hollow bead insulation concrete beams", Constr. Build. Mater., 174, 81-95. https://doi.org/10.1016/j.conbuildmat.2018.04.090.
- Zheng, A., Li, S., Zhang, D.F. and Yan, Y.H. (2021), "Shear strengthening of RC beams with corrosion-damaged stirrups using FRP grid-reinforced ECC matrix composites", Compos. Struct., 272(1), 114229. https://doi.org/10.1016/j.compstruct.2021.114229.