DOI QR코드

DOI QR Code

Competence of precast beam column joint incorporating UHPC under cyclic loading

  • R. Anandlal (Department of Civil Engineering, Anna University) ;
  • K.P. Jaya (Department of Civil Engineering, Anna University) ;
  • K.V. Jayashree (Department of Civil Engineering, Anna University)
  • 투고 : 2024.06.30
  • 심사 : 2024.10.24
  • 발행 : 2024.11.25

초록

This study explores the use of Ultra-High-Performance Concrete (UHPC) to enhance joint strength in prefabricated concrete structures, addressing challenges posed by rapid construction demands and natural disasters, particularly earthquakes. Joint failures are a key vulnerability, and UHPC, with its superior bond strength, reduces lap splice length and stirrup quantities in connection zones. The study focuses on the cyclic response of UHPC-infused precast beam-column connections, aiming to optimize structural resilience using a "strong connection, weak component" approach. Three precast specimens (PC1, PC2, PC3) with varying lap lengths and stirrup ratios are compared against a monolithic benchmark (ML) to evaluate performance under cyclic loading.

키워드

참고문헌

  1. Abbas, S., Nehdi, M.L. and Saleem, M.A. (2016), "Ultra-high-performance concrete: Mechanical performance, durability, sustainability and implementation challenges", Int. J. Concrete Struct. Mater., 10(3), 271-295. https://doi.org/10.1007/s40069-016-0157-4.
  2. ACI 239 R-18, Ultra-High-Performance Concrete: An Emerging Technology Report, Reported by ACI Committee 239, American Concrete Institute, Farmington Hills, MI, USA.
  3. Ahmad, S., Bahraq, A.A., Al-Fakih, A., Maslehuddin, M. and Al-Osta, M.A. (2024), "Durability and mechanical aspects of uhpc incorporating fly ash and natural pozzolan", Ara. J. Sci. Eng., 49(4), 5255-5266. https://doi.org/10.1007/s13369-023-08416-1.
  4. Ahmed, F.B., Biswas, R.K., Sen, D. and Tasnim, S. (2024), "Flexural and shear strengthening of reinforced-concrete beams with Ultra-High-Performance Concrete (UHPC)", Constr. Mater., 4(2), 468-492. https://doi.org/10.3390/constrmater4020025.
  5. Amran, M., Huang, S.S., Onaizi, A.M., Makul, N., Abdelgader, H.S. and Ozbakkaloglu, T. (2022), "Recent trends in ultra-high performance concrete (UHPC): Current status, challenges, and future prospects", Constr. Build. Mater., 352, 129029. https://doi.org/10.1016/j.conbuildmat.2022.129029.
  6. ASTM C 1202, Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
  7. ASTM C596 (2023), Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
  8. ASTM C642 (2021), Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
  9. Azmee, N.M. and Shafiq, N. (2018), "Ultra-high performance concrete: From Fundamental to applications", Case Stud. Constr. Mater., 9, e00197. https://doi.org/10.1016/j.cscm.2018.e00197.
  10. Bajaber, M. and Hakeem, I.Y. (2020), "UHPC evolution, development, and utilization in construction: A review", J. Mater. Res. Technol., 10, 1058-1074. https://doi.org/10.1016/j.jmrt.2020.12.051.
  11. Binard, J.P. (2017), "UHPC: A game-changing material for PCI bridge producers", PCI J., 62, 34-46. https://doi.org/10.15554/pcij62.2-01.
  12. Breccolotti, M., Gentile, S., Tommasini, M., Materazzi, A.L., Bonfigli, M.F., Pasqualini, B., Colone, V. and Gianesini, M. (2016), "Beam-column joints in continuous RC frames: Comparison between cast-in-situ and precast solutions", Eng. Struct., 127, 129-144. https://doi.org/10.1016/j.engstruct.2016.08.018.
  13. Cai, H. and Deng, F. (2023), "Numerical simulation on the cyclic behavior of ultra-high performance concrete filled steel tubular column", Struct. Eng. Mech., 85(5), 693-707. https://doi.org/10.12989/sem.2023.85.5.693.
  14. Cao, X.Y. and Feng, D.C. (2024), "A direct analytical derivation of the multi-dimensional fragility spaces of structures under nonstationary mainshock-multi-aftershock sequences", Prob. Eng. Mech., 76, 103630. https://doi.org/10.1016/j.probengmech.2024.103630.
  15. Cao, X.Y. and Feng, D.C. (2025), "Probabilistic resilience assessment framework of structures considering the combined functionality-recovery-duration uncertainty", Mech. Syst. Signal Pr., 223, 111856. https://doi.org/10.1016/j.ymssp.2024.111856.
  16. Cao, X.Y., Feng, D.C. and Beer, M. (2023), "A KDE-based non-parametric cloud approach for efficient seismic fragility estimation of structures under non-stationary excitation", Mech. Syst. Signal Pr., 205, 110873. https://doi.org/10.1016/j.ymssp.2023.110873.
  17. Cao, X.Y., Feng, D.C., Wang, C.L., Shen, D. and Wu, G. (2023), "A stochastic CSM-based displacement-oriented design strategy for the novel precast SRC-UHPC composite braced-frame in the externally attached seismic retrofitting", Compos. Struct., 321, 117308. https://doi.org/10.1016/j.compstruct.2023.117308.
  18. Cao, X.Y., Shen, D., Ji, K., Qu, Z. and Wang, C.L. (2024), "Recovery resilience framework of replaceable AB-BRB for seismic strengthening during the aftershock stage", Thin Wall. Struct., 205, 112389. https://doi.org/10.1016/j.tws.2024.112389.
  19. Cao, X.Y., Shi, J., Xu, J.G., Ji, E., She, Y. and Wang, Z. (2023), "The combined influence of bond-slip and joint-shear in the seismic upgrading via externally-attached BFRP-bar reinforced precast sub-frames", J. Build. Eng., 80, 107984. https://doi.org/10.1016/j.jobe.2023.107984.
  20. Cao, X.Y., Wu, G. and Ju, J.W.W. (2022), "Seismic performance improvement of existing RCFs using external PT-PBSPC frame sub-structures: Experimental verification and numerical investigation", J. Build. Eng., 46, 103649. https://doi.org/10.1016/j.jobe.2021.103649.
  21. Chen, W., Xie, Y., Guo, X. and Li, D. (2022), 'Experimental investigation of seismic performance of a hybrid beam-column connection in a precast concrete frame", MDPI Build., 12, 801-818. https://doi.org/10.3390/buildings12060801.
  22. Cho, H.C., Park, M.K., Hwang, J.H., Kang, W.H. and Kim, K.S. (2020), "Shear strength prediction for SFRC and UHPC beams using a Bayesian approach", Struct. Eng. Mech., 74(4), 503-514. https://doi.org/10.12989/sem.2020.74.4.503.
  23. Cimesa, M. and Moustafa, M.A. (2024), "UHPC modulus of elasticity: Assessment and new developments using companion materials and structural data", Eng. Struct., 310, 118146. https://doi.org/10.1016/j.engstruct.2024.118146.
  24. Gao, X.L., Wang, J.Y. and Yan, J.B. (2020), "Experimental studies of headed stud shear connectors in UHPC Steel composite slabs", Struct. Eng. Mech., 74(5), 657-670. https://doi.org/10.12989/sem.2020.74.5.657.
  25. Gou, S., Ding, R., Fan, J., Nie, X. and Zhang, J. (2018), "Seismic performance of a novel precast concrete beam-column connection using low-shrinkage engineered cementitious composites", Constr. Build. Mater., 192, 643-656. https://doi.org/10.1016/j.conbuildmat.2018.10.103.
  26. Hao, N., Yang, Y., Xue, Y., Feng, S., Yu, Y., Wang, C. and Li, Y. (2023), "Experimental study on flexural behavior of partially precast high-strength steel reinforced ultra-high performance concrete beam", Eng. Struct., 284, 115999. https://doi.org/10.1016/j.engstruct.2023.115999.
  27. Hoang, A.L. and Fehling, E. (2017), "A review and analysis of circular UHPC filled steel tube columns under axial loading", Struct. Eng. Mech., 62(4), 417-430. https://doi.org/10.12989/sem.2017.62.4.417.
  28. Hoang, A.L. and Fehling, E. (2017), "Assessment of stress-strain model for UHPC confined by steel tube stub columns", Struct. Eng. Mech., 63(3), 371-384. https://doi.org/10.12989/sem.2017.63.3.371.
  29. Huang, W., Hu, G., Miao, X. and Fan, Z. (2021), "Seismic performance analysis of a novel demountable precast concrete beam-column connection with multi-slit devices", J. Build. Eng., 44, 102663. https://doi.org/10.1016/j.jobe.2021.102663. 
  30. Hung, C., Tawil, S.E. and Chao, S.H. (2021), "A review of developments and challenges for UHPC in structural engineering: Behavior, analysis, and design", J. Struct. Struct. Eng., 147(9), 03121001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003073.
  31. IS 10262 (2019), Concrete Mix Proportioning-Guidelines, Bureau of Indian Standards, New Delhi.
  32. IS 1893 (Part 1) (2016), Criteria for Earthquake Resistant Design of Structures, Bureau of Indian Standards, New Delhi.
  33. IS 2386: Part 3 (1963), Methods of Test for Aggregates for Concrete Part 3 Specific Gravity, Density, Voids, Absorption and Bulking, Bureau of Indian Standards, New Delhi.
  34. IS 2720 (Part 3: Sec 1) (1980), Methods of Test for Soils: Part 3 Determination of Specific Gravity, Section 1 Fine Grained Soils, Bureau of Indian Standards, New Delhi.
  35. IS 383 (2016), Coarse and Fine Aggregate for Concrete-Specification, Third Revision, Bureau of Indian Standards, New Delhi.
  36. IS 4031: Part 4 (1988), Methods of Physical Tests for Hydraulic Cement: Part 4 Determination of Consistency of Standard Cement Paste, Bureau of Indian Standards, New Delhi.
  37. IS 4031: Part 5 (1988), Methods of Physical Tests for Hydraulic Cement: Part 5 Determination of Initial and Final Setting Times, Bureau of Indian Standards, New Delhi.
  38. IS 4031: Part 6 (1988), Methods of Physical Tests for Hydraulic Cement: Part 6 Determination of Compressive Strength of Hydraulic Cement (other than Masonry Cement), Bureau of Indian Standards, New Delhi.
  39. IS 4031-6 (1966), Methods of Physical Tests for Hydraulic Cement, Part 6: Determination of Compressive Strength of Hydraulic Cement, Bureau of Indian Standards, New Delhi.
  40. IS 456 (2000), Plain and Reinforced Concrete-Code of Practice, Fourth Revision, Bureau of Indian Standards, New Delhi.
  41. IS 516 (1959), Method of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi.
  42. IS 5816 (1999), Method of Test Splitting Tensile Strength of Concrete, Bureau of Indian Standards, New Delhi.
  43. Le, P.T., Le, A.H. and Binglin, L. (2020), "Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC", Struct. Eng. Mech., 75(6), 643-657. https://doi.org/10.12989/sem.2020.75.6.643.
  44. Lin, J.X., Luo, R.H., Su, J.Y., Guo, Y.C. and Chen, W.S. (2024), "Coarse synthetic fibers (PP and POM) as a replacement to steel fibers in UHPC: Tensile behavior, environmental and economic assessment", Constr. Build. Mater., 412, 134654. https://doi.org/10.1016/j.conbuildmat.2023.134654
  45. Liu, Y., Wang, L., Wei, Y., Sun, C. and Xu, Y. (2024), "Current research status of UHPC creep properties and the corresponding applications-A review", Constr. Build. Mater., 416, 135120. https://doi.org/10.1016/j.conbuildmat.2024.135120.
  46. Murali, G. (2024), "Recent research in mechanical properties of geopolymer-based ultra-high-performance concrete: A review", Def. Technol., 32, 67-88. https://doi.org/10.1016/j.dt.2023.07.003.
  47. Nguyen, C.V., Le, A.H. and Thai, D.K. (2019), "Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC", Struct. Eng. Mech., 70(1), 13-31. https://doi.org/10.12989/sem.2019.70.1.013.
  48. Oh, T., Chun, B., Lee, S.K., Kim, G.W., Banthia, N. and Yoo, D.Y. (2024), "Effect of high-volume substituted nanosilica on the hydration and mechanical properties of Ultra-High-Performance Concrete (UHPC)", Cement Concrete Res., 175, 107379. https://doi.org/10.1016/j.cemconres.2023.107379.
  49. Qi, J., Cheng, Z., Wang, J., Zhu, Y. and Li, W. (2020), "Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges", Struct. Eng. Mech., 75(1), 49-57. https://doi.org/10.12989/sem.2020.75.1.049.
  50. Reda, M.M., Shrive, N.G. and Gillott, J.E. (1999), "Microstructural investigation of innovative UHPC", Cement Concrete Res., 29, 323-239. https://doi.org/10.1016/S0008-8846(98)00225-7.
  51. Ronanki, S.R, Aaltei, S. and Valentim, A.B. (2018), "Experimental investigation of bond behavior of mild steel reinforcement in UHPC", Eng. Struct., 176, 707-718. https://doi.org/10.1016/j.engstruct.2018.09.031.
  52. Shi, Z., Su, Q., Kavoura, F. and Veljkovic, M. (2023), "Fatigue behavior evaluation of full-scale OSD-UHPC composite bridge deck system", Eng. Struct., 275, 115179. https://doi.org/10.1016/j.engstruct.2022.115179.
  53. Vidjeapriya, R. and Jaya, K.P. (2012), "Behaviour of precast Beam-Column Mechanical Connections under cyclic loading", Asian J. Civil Eng. (Build. Hous.), 13(2), 233-245.
  54. Xiong, X., Xie, Y., Yao, G., Liu, J., Yan, L. and He, L. (2022), "Experimental study on seismic performance of precast pretensioned prestressed concrete beam-column interior joints using UHPC for connection", MDPI Mater., 15(16), 5791. https:// doi.org/10.3390/ma15165791.
  55. Xu, T., Yang, J., Wang, C., Guo, T., Deng, K. and Xie, T. (2024), "Comparative sustainability and seismic performance analysis of reinforced conventional concrete and UHPC bridge piers", J. Clean. Prod., 467, 142959. https://doi.org/10.1016/j.jclepro.2024.142959.
  56. Xue, H., Ashour, A., Ge, W., Cao, D., Sun, C. and Cao, S. (2023), "Seismic response of prestressed precast reinforced concrete beam-column joints assembled by steel sleeves", Eng. Struct., 276, 115328. https://doi.org/10.1016/j.engstruct.2022.115328.
  57. Xue, W., Hu, X. and Song, J. (2021), "Experimental study on seismic behavior of precast concrete beam-column joints using UHPC-based connection", Struct., 34, 4867-4881. https://doi.org/10.1016/j.istruc.2021.10.067.
  58. Yuan, Y., Huang, H., Ye, Y., Li, M. and Sun, H. (2022), "Performance coordination design method applied to replace artificial controllable plastic hinge for precast concrete beam-column joints", J. Build. Eng., 47, 103863. https://doi.org/10.1016/j.jobe.2021.103863.
  59. Zhang, X., Wu, Z., Xie, J., Hu, X. and Shi, C. (2024), "Trends toward lower-carbon ultra-high performance concrete (UHPC)-A review", Constr. Build. Mater., 420. https://doi.org/10.1016/j.conbuildmat.2024.135602.