과제정보
This research was funded by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), grant number (NRF-2020R1G1A1006911). This work was supported by Chungbuk National University BK21 program (2023).
참고문헌
- Babuska, I. and Melenk, J.M. (1997), "The partition of unity method", Int. J. Numer. Meth. Eng., 40(4), 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N.
- Bathe, K.J. (2016), Finite Element Procedures, 2nd Edition, 2014 and Higher Education Press, China.
- Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tensorial components", Int. J. Numer. Meth. Eng., 22(3), 697-722. https://doi.org/10.1002/nme.1620220312.
- Capuano, G. and Rimoli, J.J. (2019), "Smart finite elements: A novel machine learning application", Comput. Meth. Appl. Mech. Eng., 345, 363-381. https://doi.org/10.1016/j.cma.2018.10.046
- Chau-Dinh, T., Nguyen-Duy, Q. and Nguyen-Xuan, H. (2017), "Improvement on MITC3 plate finite element using edge-based strain smoothing enhancement for plate analysis", Acta Mechanica, 228(6), 2141-2163. https://doi.org/10.1007/s00707-017-1818-3.
- Choi, H.G. and Lee, P.S. (2023), "Towards improving the 2D-MITC4 element for analysis of plane stress and strain problems", Comput. Struct., 275, 106933. https://doi.org/10.1016/j.compstruc.2022.106933.
- Choi, H.G., Byun, Y.I., Song, C.K., Jun, M.B., Lee, C. and Kim, S. (2023), "A solution procedure to improve 3D solid finite element analysis with an enrichment scheme", Appl. Sci., 13(12), 7114. https://doi.org/10.3390/app13127114.
- Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons.
- Daux, C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. J. Numer. Meth. Eng., 48(12), 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L.
- Dolbow, J., Moes, N. and Belytschko, T. (2000), "Modeling fracture in Mindlin-Reissner plates with the extended finite element method", Int. J. Solid. Struct., 37(48-50), 7161-7183. https://doi.org/10.1016/S0020-7683(00)00194-3.
- Ham, S. and Bathe, K.J. (2012), "A finite element method enriched for wave propagation problems", Comput. Struct., 94, 1-12. https://doi.org/10.1016/j.compstruc.2012.01.001.
- Ibrahimbegovic, A. and Wilson, E.L. (1991), "A modified method of incompatible modes", Commun. Appl. Numer. Meth., 7(3), 187-194. https://doi.org/10.1002/cnm.1630070303.
- Jin, Y.F., Yuan, W.H., Yin, Z.Y. and Cheng, Y.M. (2020), "An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering", Int. J. Numer. Anal. Meth. Geomech., 44(7), 923-941. https://doi.org/10.1002/nag.3016.
- Jun, H. and Kim, S. (2018), "Benchmark tests of MITC triangular shell elements", Struct. Eng. Mech., 68(1), 17-38. https://doi.org/10.12989/sem.2018.68.1.017.
- Jung, J., Park, S. and Lee, C. (2022), "A posteriori error estimation via mode-based finite element formulation using deep learning", Struct. Eng. Mech., 83(2), 273-282. https://doi.org/10.12989/sem.2022.83.2.273.
- Kim, J. and Bathe, K.J. (2013), "The finite element method enriched by interpolation covers", Comput. Struct., 116, 35-49. https://doi.org/10.1016/j.compstruc.2012.10.001.
- Kim, S. and Lee, P.S. (2018), "A new enriched 4-node 2D solid finite element free from the linear dependence problem", Comput. Struct., 202, 25-43. https://doi.org/10.1016/j.compstruc.2018.03.001.
- Kim, S. and Lee, P.S. (2019), "New enriched 3D solid finite elements: 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements", Comput. Struct., 216, 40-63. https://doi.org/10.1016/j.compstruc.2018.12.002.
- Kwon, S.B., Bathe, K.J. and Noh, G. (2020), "An analysis of implicit time integration schemes for wave propagations", Comput. Struct., 230, 106188. https://doi.org/10.1016/j.compstruc.2019.106188.
- Lee, C. and Kim, S. (2020), "Towards improving finite element solutions automatically with enriched 2D solid elements", Struct. Eng. Mech., 76(3), 379-393. https://doi.org/10.12989/sem.2020.76.3.379.
- Lee, C. and Lee, P.S. (2018), "A new strain smoothing method for triangular and tetrahedral finite elements", Comput. Meth. Appl. Mech. Eng., 341, 939-955. https://doi.org/10.1016/j.cma.2018.07.022.
- Lee, C. and Park, J. (2021), "A variational framework for the strain-smoothed element method", Comput. Math. Appl., 94, 76-93. https://doi.org/10.1016/j.camwa.2021.04.025.
- Lee, C. and Park, J. (2023), "Preconditioning for finite element methods with strain smoothing", Comput. Math. Appl., 130, 41-57. https://doi.org/10.1016/j.camwa.2022.11.018.
- Lee, C., Kim, S. and Lee, P.S. (2021), "The strain-smoothed 4-node quadrilateral finite element", Comput. Meth. Appl. Mech. Eng., 373, 113481. https://doi.org/10.1016/j.cma.2020.113481.
- Lee, C., Lee, D.H. and Lee, P.S. (2022), "The strain-smoothed MITC3+ shell element in nonlinear analysis", Comput. Struct., 266, 106768. https://doi.org/10.1016/j.compstruc.2022.106768.
- Lee, C., Moon, M. and Park, J. (2022), "A gradient smoothing method and its multiscale variant for flows in heterogeneous porous media", Comput. Meth. Appl. Mech. Eng., 395, 115039. https://doi.org/10.1016/j.cma.2022.115039.
- Liu, G.R., Nguyen-Thoi, T. and Lam, K.Y. (2009), "An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids", J. Sound Vib., 320(4-5), 1100-1130. https://doi.org/10.1016/j.jsv.2008.08.027.
- Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
- Simo, J.C. and Hughes, T. (1986), "On the variational foundations of assumed strain methods", J. Appl. Mech., 53(1), 51-54. https://doi.org/10.1115/1.3171737.
- Tian, R., Yagawa, G. and Terasaka, H. (2006), "Linear dependence problems of partition of unity-based generalized FEMs", Comput. Meth. Appl. Mech. Eng., 195(37-40), 4768-4782. https://doi.org/10.1016/j.cma.2005.06.030.
- Yu, M., Kim, S. and Noh, G. (2023), "Learned Gaussian quadrature for enriched solid finite elements", Comput. Meth. Appl. Mech. Eng., 414, 116188. https://doi.org/10.1016/j.cma.2023.116188.