DOI QR코드

DOI QR Code

Bending failure performance of RC beams with openings reinforced by composite materials

  • Yousry B.I. Shaheen (Civil Engineering Department, Faculty of Engineering, Menoufia University) ;
  • Ashraf M. Mahmoud (Civil Engineering Department, Faculty of Engineering, Modern University for Technology and Information (MTI))
  • 투고 : 2023.11.23
  • 심사 : 2024.11.01
  • 발행 : 2024.11.25

초록

The results of a study that looked at the experimental and numerical performance of ferrocement RC beams with openings reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh, and polyethylene mesh separately are presented in this article. The research program included casting and testing of fourteen 200×100×2000mm reinforced concrete beams under flexural loadings. The primary factors that change are the type of reinforcing materials, the volume fraction of reinforcement, the quantity of mesh layers, and the quantity of stirrups. Understanding the effects of using novel, alluring materials to reinforce RC beams with openings is the main objective. Nonlinear finite element analysis (NLFEA) was used to demonstrate the behavior of composite RC beams with openings using ANSYS-16.0 Software. A parametric study is also carried out to discuss the factors, such as the number of openings that can most significantly affect the mechanical behavior of the suggested model. The obtained experimental and numerical results showed that the FE simulations provided an acceptable level of experimental value estimation. Furthermore, it is significant to show that, in comparison to specimens reinforced with expanded or welded steel meshes, the strength gained of specimens reinforced with fiber glass meshes was reduced by about 38%. Additionally, using expanded steel meshes to reinforce RC beams with openings results in a 16% increase in strength when compared to welded steel meshes. In general, ferrocement beams with openings demonstrate higher-level ultimate loads and energy-absorbing capacity than conventional beams when tested under flexural loadings.

키워드

참고문헌

  1. Abbas, O.H. and Numan, H.A. (2021), "A state of the art review on transverse web opening for reinforced concrete beams with and without strengthening method", J. Phys.: Conf. Ser., 1895(1), 012059. https://doi.org/10.1088/1742-6596/1895/1/012059.
  2. Abdel-Naby, A. (2006), "Development of ferrocement U-shaped beams infilled with core materials", M.S. Thesis, the American University in Cairo, Egypt.
  3. Al Amli, A., Al-Ansari, N. and Shejiri, S.J.D. (2018), "Repairing of RC T-section beams with opening by CFRP for cracks and ultimate torque", J. Civil Eng. Arch., 12, 83-90. https://doi.org/10.17265/1934-7359/2018.02.001.
  4. ANSYS User Manual Release 16.0 (2015), ANSYS Inc., Canonsburg, Pennsylvania.
  5. Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.
  6. ASTM C III6/C III6M (2015), Standard Specification for Fiber-Reinforced Concrete, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA.
  7. Chen, Z., Xu, R., Ling, Z., Liang, Y., Lu, S. and Qin, L. (2023), "Experimental and numerical analysis of shear performance of reinforced concrete beams with double openings", Arch. Civil Mech. Eng., 23(3), 195. https://doi.org/10.1007/s43452-023-00745-0.
  8. Chin, S.C., Tee, K.F., Tong, F.S., Doh, S.I. and Gimbun, J. (2020), "External strengthening of reinforced concrete beam with opening by bamboo fiber reinforced composites", Mater. Struct., 53, 1-12. https://doi.org/10.1617/s11527-020-01572-y.
  9. Elkafrawy, M., Nabil, A. and Meleka, N. (2023), "A state-of-the-art-review on reinforced concrete beams with web openings", Eng. Res. J., 46(1), 119-132.
  10. Fanning, P. (2001), "Nonlinear models of reinforced and post tensioned concrete beams", Lecture, Department of Civil Engineering, University College Dublin Earls fort Terrace, Dublin, Ireland.
  11. Fayyadh, M.M. and Abed, M.J. (2022), "Utilizing CFRP and steel plates for repair of damaged RC beams with circular web openings", Struct. Eng. Mech., 84(1), 49-61. https://doi.org/10.12989/sem.2022.84.1.049.
  12. Halvaeyfar, M.R., Zeighami, E., Mirhosseini, S.M. and Joshaghani, A.H. (2023), "Experimental and numerical study of the behavior of fiber reinforced concrete beams with nano-graphene oxide and strengthening CFRP sheets", Struct. Eng. Mech., 87(4), 375-389. https://doi.org/10.12989/sem.2023.87.4.375.
  13. Hekal, G.M., Elshaboury, A.M.M. and Shaheen, Y.B.I. (2024), "The impact of openings on ferrocement I-beams: A study on metallic and non-metallic mesh reinforcement", Chall. J. Concrete Res. Lett., 15(2), https://doi.org/10.20528/cjcrl.2024.02.001.
  14. Hoque, M. (2006), "3D Nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement". M.Sc. Thesis, University of Manitoba, Winnipeg, Manitoba, Canada.
  15. Housing and Building National Research Center (2007), The Egyptian Code for Design and Construction of Concrete Structures, ECP 203-2007, Ministry of Housing, Utilities and Urban Communities, Giza, Egypt.
  16. IFS Commitee 10 (2001), Ferrocement Model Code: Building Code Recommendations for Ferrocement, IFS 10-01, International Ferrocement Society, Asian Institute of Technology, Bangkok, Thailand.
  17. Kachlakev, D. and Miller, T. (2001), "Finite element modeling of reinforced concrete structures strengthened with FRP laminates", Oregon State University.
  18. Kueh, A.B.H., Tan, J.H., Hassan, S.A. and Wahit, M.U. (2023), "Repeated impact response of bio-inspired sandwich beam with arched and honeycomb bilayer core", Struct. Eng. Mech., 85(6), 755-764. https://doi.org/10.12989/sem.2023.85.6.755.
  19. Mabrouk, R.T.S., Mahmoud, M.A.S. and Kassem, M.E. (2022), "Behavior of reinforced concrete deep beams with openings under vertical loads using strut and tie model", Civil Eng. J., 7, 149-170. http://doi.org/10.28991/CEJ-SP2021-07-011.
  20. Mimi, M.M., Shakil, A.M.O.R., Haque, M.R. and Hasan, M.R. (2023), "Effect of addition of cao on compressive strength of high volume fly ash concrete", J. Civil Eng., Sci. Technol., 14(1), 64-76. https://doi.org/10.33736/jcest.5081.2023.
  21. Ortiz-Navas, F., Navarro-Gregori, J., Leiva, J. and Serna, P. (2020), "Comparison of macrosynthetic and steel FRC shear-critical beams with similar residual flexure tensile strengths", Struct. Eng. Mech., 76(4), 491-503. https://doi.org/10.12989/sem.2020.76.4.491.
  22. Parol, J., Ben-Nakhi, A., Al-Sanad, S., Al-Qazweeni, J., Al-Duaij, H.J. and Kamal, H. (2019), "Experimental and numerical investigation of reinforced concrete beams containing vertical openings", Struct. Eng. Mech., 72(3), 383-393. https://doi.org/10.12989/sem.2019.72.3.383.
  23. Rajguru, R.S. and Patkar, M. (2022), "Torsion behavior of strengthened RC beams by ferrocement", Mater. Today: Proc., 61(2), 138-142. https://doi.org/10.1016/j.matpr.2021.06.329.
  24. Razaghi, J., Hosseini, A. and Hatami, F. (2005), "Finite element method application in nonlinear analysis of reinforced concrete structures", Second National Congress of Civil Engineering.
  25. Safari, M., Mohammadimehr, M. and Ashrafi, H, (2023), "Forced vibration of a sandwich Timoshenko beam made of GPLRC and porous core", Struct. Eng. Mech., 88(1), 1-12. https://doi.org/10.12989/sem.2023.88.1.001.
  26. Safiaa, A.R., Behera, S., Jamatia, R., Kumar, R. and Mondal, S. (2023), "Experimental-numerical study on the FRP-strengthened reinforced concrete beams with a web opening", Adv. Concrete Constr., 15(5), 321-331. https://doi.org/10.12989/sem.2023.85.6.755.
  27. Saleh, M., Al-Hamaydeh, M. and Zakaria, M. (2023), "Finite element analysis of reinforced concrete deep beams with square web openings using damage plasticity model", Eng. Struct., 278, 115496. https://doi.org/10.1016/j.engstruct.2022.115496.
  28. Shaheen, Y.B.I., Hekal, G.M. and Fadel, A.K. (2023), "Structural behavior of multi-cell ferrocement composite beams", International Conference on Advances in Structural and Geotechnical Engineering (ICASGE'23), Hurghada, Egypt.
  29. Shaheen, Y.B.I., Soliman, N.M. and Kandil, D.E. (2013), "Influence of reinforced ferrocement concrete plates under impact load", Int. J. Curr. Eng. Technol., 3(4), 1528-1540.
  30. Singh, G. (2006), "Finite element analysis of reinforced concrete shear walls", M.Sc. Thesis, Deemed University, India.
  31. Slowik, M. and Smarzewski, P. (2014), "Numerical modeling of diagonal cracks in concrete beams", Arch. Civil Eng., 60(3), 307-322. https://doi.org/10.2478/ace-2014-0021.
  32. Smarzewski, P. (2018), "Analysis of failure mechanics in hybrid fibre-reinforced high-performance concrete deep beams with and without openings", Mater., 12(1), 101. https://doi.org/10.3390/ma12010101.
  33. Smarzewski, P. (2018), "Hybrid fibers as shear reinforcement in high-performance concrete beams with and without openings", Appl. Sci., 8(11), 2070. https://doi.org/10.3390/app8112070.
  34. Stolarski, A. and Zychowicz, J. (2021), "Experimental investigations of reinforced concrete beams with innovative truss-shaped reinforcement system", Mater., 14(7), 1652. https://doi.org/10.3390/ma14071652.
  35. Varum, H. (2003), "Seismic assessment, strengthening and repair of existing buildings", Ph.D. Thesis, Civil Engineering Department, University of Aveiro, Portugal.
  36. William, K.J. and Warnke, E.D. (1975), "Constitutive model for the triaxial behavior of concrete", Proc. of the Int. Assoc. Bridge Structural Engineering, ISMES, Bergamo, 19, 174.
  37. Wolanski, A.J. (2004), "Flexural behavior of reinforced and prestressed concrete beams using finite element analysis", Milwaukee, Wisconsin.