References
- Al-Jeznawi, D., Khatti, J., Al-Janabi, M.A.Q., Grover, K.S., Jais, I.B.M., Albusoda, B.S. and Khalid, N. (2023), "Seismic performance assessment of single pipe piles using three-dimensional finite element modeling considering different parameters", Earthq. Struct., 24(6), 455-475. https://doi.org/10.12989/eas.2023.24.6.455.
- Amjad, M., Ahmad, I., Ahmad, M., Wroblewski, P., Kaminski, P. and Amjad, U. (2022), "Prediction of pile bearing capacity using XGBoost algorithm: Modeling and performance evaluation", Appl. Sci., 12(4), 2126. https://doi.org/10.3390/app12042126.
- Badgujar, C., Das, S., Figueroa, D.M. and Flippo, D. (2023), "Application of computational intelligence methods in agricultural soil-machine interaction: A review", Agriculture, 13(2), 357. https://doi.org/10.3390/agriculture13020357.
- Badhon, F.F. (2021), Performance of Recycled Plastic Pins for Increasing Bearing Capacity of Foundation Soil, The University of Texas at Arlington.
- Bao, X., Jia, H. and Lang, C. (2019), "A novel hybrid harris hawks optimization for color image multilevel thresholding segmentation", IEEE Access, 7, 76529-76546. https://doi.org/10.1109/ACCESS.2019.2921545.
- Bardhan, A., Manna, P., Kumar, V., Burman, A., Zlender, B. and Samui, P. (2021), "Reliability analysis of piled raft foundation using a novel hybrid approach of ANN and equilibrium optimizer", CMES-Comput. Modeling Eng. Sci., 128(3), https://doi.org/10.32604/cmes.2021.015885.
- Benali, A., Hachama, M., Bounif, A., Nechnech, A. and Karray, M. (2021), "A TLBO-optimized artificial neural network for modeling axial capacity of pile foundations", Eng. Comput., 37(1), 675-684. https://doi.org/10.1007/s00366-019-00847-5.
- Berke, L. and Hajela, P. (1993), Optimization of Large Structural Systems. Springer, 731-745.
- Bloodworth, A. and Su, J. (2018), "Numerical analysis and capacity evaluation of composite sprayed concrete lined tunnels", Underg. Space 3(2), 87-108. https://doi.org/10.1016/j.undsp.2017.12.001.
- Change, I.C. (2007), The Physical Science Ba-sis. Contribution of Working Group 1 to the Fourth Assessment Report ofthe Intergovernmental Panel on Climate Change. Cambridge. UK.
- Chen, S., Zhang, H., Zykova, K.I., Touchaei, H.G., Yuan, C., Moayedi, H. and Le, B.N. (2023), "Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions", Comput. Concrete, 32(2), 217-232. https://doi.org/10.12989/cac.2023.32.2.217.
- Daniel, C., Khatti, J. and Grover, K.S. (2024), "Assessment of compressive strength of high-performance concrete using soft computing approaches", Comput. Concrete, 33(1), 55. https://doi.org/10.12989/cac.2024.33.1.055.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concr 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Ehteram, M., Ferdowsi, A., Faramarzpour, M., Al-Janabi, A.M.S., Al-Ansari, N., Bokde, N.D. and Yaseen, Z.M. (2021), "Hybridization of artificial intelligence models with nature inspired optimization algorithms for lake water level prediction and uncertainty analysis", Alexandria Eng. J., 60(2), 2193-2208. https://doi.org/10.1016/j.aej.2020.12.034.
- Fan, S., He, T., Li, W., Zeng, C., Chen, P., Chen, L. and Shu, J. (2024), "Machine learning-based classification of quality grades for concrete vibration behaviour", Automation Construct., 167, 105694. https://doi.org/10.1016/j.autcon.2024.105694.
- Fang, H.-Y. (2013), Foundation Engineering Handbook. Springer Science & Business Media.
- Firoozi, A.A. and Firoozi, A.A. (2023), "Application of machine learning in geotechnical engineering for risk assessment", https://doi.org/10.5772/intechopen.113218.
- Ghasemi, M., Ghavidel, S., Akbari, E. and Vahed, A.A. (2014), "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos", Energy, 73, 340-353. https://doi.org/10.1016/j.energy.2014.06.026.
- Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M. and Chen, H. (2019), "Harris hawks optimization: Algorithm and applications", Future Generation Comput. Syst., 97, 849-872. https://doi.org/10.1016/j.future.2019.02.028.
- Huang, H., Li, M., Yuan, Y. and Bai, H. (2023), "Experimental research on the seismic performance of precast concrete frame with replaceable artificial controllable plastic hinges", J. Struct. Eng., 149(1), 04022222. https://doi.org/10.1061/JSENDH.STENG-11648.
- Hussein, F. (2022), "Deep foundations: A survey on methods of construction, methods of calculation and a real-life design calculation", Ph.D. Dissertation, Altinbas universitesi/Lisansustu Egitim Enstitusu.
- Isbuga, V. (2020), "Modeling of pile-soil-pile interaction in laterally loaded pile groups embedded in linear elastic soil layers", Arab. J. Geosci., 13, 1-17. https://doi.org/10.1007/s12517-020-5229-8.
- Izadi, A., Nazemi Sabet Soumehsaraei, M., Jamshidi Chenari, R., Moallemi, S. and Javankhoshdel, S. (2021), "Spectral bearing capacity analysis of strip footings under pseudo-dynamic excitation", Geomech. Geoeng., 16(5), 359-378. https://doi.org/10.1080/17486025.2019.1670873.
- Jebur, A.A., Atherton, W., Al Khaddar, R.M. and Loffill, E. (2021), "Artificial neural network (ANN) approach for modelling of pile settlement of open-ended steel piles subjected to compression load", Europ. J. Environ. Civil Eng., 25(3), 429-451. https://doi.org/10.1080/19648189.2018.1531269.
- Kiany, K., Baghbani, A., Abuel-Naga, H., Baghbani, H., Arabani, M. and Shalchian, M.M. (2023), "Enhancing ultimate bearing capacity prediction of cohesionless soils beneath shallow foundations with grey box and hybrid AI models", Algorithms, 16(10), 456. https://doi.org/10.3390/a16100456.
- Kouchami-Sardoo, I., Shirani, H., Esfandiarpour-Boroujeni, I., Besalatpour, A. and Hajabbasi, M. (2020), "Prediction of soil wind erodibility using a hybrid Genetic algorithm-Artificial neural network method", Catena, 187, 104315. https://doi.org/10.1016/j.catena.2019.104315.
- Kumar, M., Kumar, V., Rajagopal, B.G., Samui, P. and Burman, A. (2023), "State of art soft computing based simulation models for bearing capacity of pile foundation: a comparative study of hybrid ANNs and conventional models", Modeling Earth Syst. Environ., 9(2), 2533-2551. https://doi.org/10.1007/s40808-022-01637-7.
- Li, H., Zeng, J., Almadhor, A., Riahi, A., Almujibah, H., Abbas, M., Ponnore, J.J. and Assilzadeh, H. (2024), "A study on improving energy flexibility in building engineering through generalized prediction models: Enhancing local bearing capacity of concrete for engineering structures", Eng. Struct., 303, 117051. https://doi.org/10.1016/j.engstruct.2023.117051.
- Lu, D., Wang, G., Du, X. and Wang, Y. (2017), "A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete", Int. J. Impact Eng., 103, 124-137. https://doi.org/10.1016/j.ijimpeng.2017.01.011.
- MacKay, D.J. (1998), "Introduction to Gaussian processes", NATO ASI Series F Comput. Syst. Sci., 168, 133-166.
- Mahesh, B. (2020), "Machine learning algorithms-a review", Int. J. Sci. Res., (IJSR).[Internet], 9(1), 381-386. https://doi.org/10.21275/ART20203995.
- Marill, K.A. (2004), "Advanced statistics: linear regression, part I: simple linear regression", Academic Emergency Medicine, 11(1), 87-93.
- Mehrabian, A.R. and Lucas, C. (2006), "A novel numerical optimization algorithm inspired from weed colonization", Ecological Informatics, 1(4), 355-366. https://doi.org/10.1016/j.ecoinf.2006.07.003.
- Milad, F., Kamal, T., Nader, H. and Erman, O.E. (2015), "New method for predicting the ultimate bearing capacity of driven piles by using Flap number", KSCE J. Civil Eng., 19(3), 611-620. https://doi.org/10.1007/s12205-013-0315-z.
- Moayedi, H. and Jahed Armaghani, D. (2018), "Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil", Eng. Comput., 34(2), 347-356. https://doi.org/10.1007/s00366-017-0545-7.
- Moayedi, H., Mosallanezhad, M., Rashid, A.S.A., Jusoh, W.A.W. and Muazu, M.A. (2020), "A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications", Neural Comput. Appl., 32, 495-518. https://doi.org/10.1007/s00521-019-04109-9.
- Moayedi, H., Varamini, N., Mosallanezhad, M., Foong, L.K. and Le, B.N. (2022), "Applicability and comparison of four nature-inspired hybrid techniques in predicting driven piles' friction capacity", Transport. Geotech., 37, 100875. https://doi.org/10.1016/j.trgeo.2022.100875.
- Mohajerani, A., Bosnjak, D. and Bromwich, D. (2016), "Analysis and design methods of screw piles: A review". Soils Found., 56(1), 115-128. https://doi.org/10.1016/j.sandf.2016.01.009.
- Murlidhar, B.R., Sinha, R.K., Mohamad, E.T., Sonkar, R. and Khorami, M. (2020), "The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity", Int. J. Hydromechatronic., 3(1), 69-87. https://doi.org/10.1504/IJHM.2020.105484.
- Naidu, Y.R. and Ojha, A.K. (2015), "A hybrid version of invasive weed optimization with quadratic approximation", Soft Comput., 19(12), 3581-3598. https://doi.org/10.1007/s00500-015-1896-x.
- Nguyen, Q.V., Fatahi, B. and Hokmabadi, A.S. (2017), "Influence of size and load-bearing mechanism of piles on seismic performance of buildings considering soil-pile-structure interaction", Int. J. Geomech., 17(7), 04017007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000869.
- Nguyen, T., Ly, K.-D., Nguyen-Thoi, T., Nguyen, B.-P. and Doan, N.-P. (2022), "Prediction of axial load bearing capacity of PHC nodular pile using Bayesian regularization artificial neural network", Soils Found., 62(5), 101203. https://doi.org/10.1016/j.sandf.2022.101203.
- Niranjan, A., Nutan, D., Nitish, A., Shenoy, P.D. and Venugopal, K. (2018), "ERCR TV: Ensemble of random committee and random tree for efficient anomaly classification using voting", 2018 3rd International Conference for Convergence in Technology (I2CT) 1-5.
- Oluwatuyi, O.E., Ng, K. and Wulff, S.S. (2023), "Improved resistance prediction and reliability for bridge pile foundation in shales through optimal site investigation plans", Reliability Eng. Sys. Safety, 239, 109476. https://doi.org/10.1016/j.ress.2023.109476.
- Onyelowe, K.C., Mojtahedi, F.F., Azizi, S., Mahdi, H.A., Sujatha, E.R., Ebid, A.M., Darzi, A.G. and Aneke, F.I. (2022), "Innovative overview of SWRC application in modeling geotechnical engineering problems", Designs, 6(5), 69. https://doi.org/10.3390/designs6050069.
- Pham, T.A., Ly, H.-B., Tran, V.Q., Giap, L.V., Vu, H.-L.T. and Duong, H.-A.T. (2020), "Prediction of pile axial bearing capacity using artificial neural network and random forest", Appl. Sci., 10(5), 1871. https://doi.org/10.3390/app10051871.
- Phoon, K.-K. (2023), "What geotechnical engineers want to know about reliability", ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civil Eng., 9(2), 03123001. https://doi.org/10.1061/AJRUA6.RUENG-1002.
- Phoon, K.-K. and Tang, C. (2019), "Characterisation of geotechnical model uncertainty", Georisk: Assessment Manage. Risk Eng. Syst. Geohaz., 13(2), 101-130. https://doi.org/10.1080/17499518.2019.1585545.
- Phoon, K.-K., Cao, Z.-J., Ji, J., Leung, Y.F., Najjar, S., Shuku, T., Tang, C., Yin, Z.-Y., Ikumasa, Y. and Ching, J. (2022), "Geotechnical uncertainty, modeling, and decision making", Soils Found., 62(5), 101189. https://doi.org/10.1016/j.sandf.2022.101189.
- Qiao, W., Moayedi, H. and Foong, L.K. (2020), "Nature-inspired hybrid techniques of IWO, DA, ES, GA, and ICA, validated through a k-fold validation process predicting monthly natural gas consumption", Energy Build., 217, 110023. https://doi.org/10.1016/j.enbuild.2020.110023.
- Rabiei, M. and Choobbasti, A.J. (2020), "Innovative piled raft foundations design using artificial neural network", Front. Struct. Civil Eng., 14(1), 138-146. https://doi.org/10.1007/s11709-019-0585-8.
- Rigatti, S.J. (2017), "Random forest", J. Insurance Medicine, 47(1), 31-39.
- Skurichina, M. and Duin, R.P. (2002), "Bagging, boosting and the random subspace method for linear classifiers", Pattern Anal. Appl., 5, 121-135. https://doi.org/10.1007/s100440200011
- Taylor, K.E. (2001), "Summarizing multiple aspects of model performance in a single diagram", J. Geophy. Res. Atmos., 106(D7), 7183-7192. https://doi.org/10.1029/2000JD900719.
- Wang, A.X., Chukova, S.S. and Nguyen, B.P. (2022), "Implementation and analysis of centroid displacement-based k-nearest neighbors", International Conference on Advanced Data Mining and Applications, 431-443.
- Wang, F. and Liu, Y. (2022), "A mechanism-based simulation algorithm for crack propagation in non-uniform geomaterials", Comput. Geotech., 151, 104994. https://doi.org/10.1016/j.compgeo.2022.104994.
- Zhang, J. and Morris, A.J. (1998), "A sequential learning approach for single hidden layer neural networks", Neural Networks, 11(1), 65-80. https://doi.org/10.1016/S0893-6080(97)00111-1.
- Zhang, W., Gu, X., Tang, L., Yin, Y., Liu, D. and Zhang, Y. (2022), "Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge", Gondwana Res., 109, 1-17. https://doi.org/10.1016/j.gr.2022.03.015.
- Zhang, X., Wang, S., Liu, H., Cui, J., Liu, C. and Meng, X. (2024), "Assessing the impact of inertial load on the buckling behavior of piles with large slenderness ratios in liquefiable deposits", Soil Dyn. Earthq. Eng., 176, 108322. https://doi.org/10.1016/j.soildyn.2023.108322.