참고문헌
- Abbas, S., Benguediab, S., Draiche, K., Bakora, A. and Benguediab, M. (2020), "An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates", Struct Eng Mech, 74(3), 365-380. https://doi.org/10.12989/sem.2020.74.3.365.
- Abualnour, M., Houari, MSA, Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos Struct, 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
- Akavci, S.S. and A.H. Tanrikulu (2015). "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B: Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
- Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Appl Phys A, 123, 296. https://doi.org/10.1007/s00339-017-0854-0.
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
- Belbachir, N., Draiche, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
- Bennai, R., Fourn, H., Ait Atmane, H., Tounsi, A. and Bessaim, A., (2019), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl Mech Rev ASME, 60(5), 195-216. https://doi.org/10.1115/1.2777164.
- Birman, V., Keil, T. and Hosder, S. (2013), "Functionally graded materials in engineering", Struct. Interfaces Attachmen. Biology, 19-41, https://doi.org/10.1007/978-1-4614-3317-0_2.
- Bouchafa, A., Benzair, A., Tounsi, A., Draiche, K., Mechab, I. and Adda Bedia, E.A. (2010), "Analytical modeling of thermal residual stresses in exponential functionally graded material system", J Mater Des., 31(1), 560-563. https://doi.org/10.1016/j.matdes.2009.07.010.
- Brischetto, S. and Carrera E. (2010), "Advanced mixed theories for bending analysis of functionally graded plates", Comput Struct, 88, 1474-1483. https://doi.org/10.1016/j.compstruc.2008.04.004.
- Carrera, E. and Brischetto, S. (2011), "Modeling and analysis of functionally graded beams, plates and shells: Part II", Mech Adv Mater Struct, 18(1), 1-2, https://doi.org/10.1080/15376494.2011.537567.
- Cheng, Z.Q. and Batra, R.C. (2000), "Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates", J Sound Vib, 229(4), 879-895. https://doi.org/10.1006/jsvi.1999.2525.
- Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
- Belbachir, N., Draiche, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.3.081.
- Fazzolari, F.A. (2016), "Reissner's Mixed Variational Theorem and variable kinematics in the modelling of laminated composite and FGM doubly-curved shells", Compos B Eng, 89, 408-423. https://doi.org/10.1016/j.compositesb.2015.11.031.
- Ferreira, A.J.M., Batra, R.C. and Roque, C.M.C. (2005), "Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method", Compos Struct, 69(4), 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003.
- Ghavami, K., Rodriques, C.S. and Paciornik, S. (2003), "Bamboo: functionally graded composite material", Asian J. Civ. Eng. (Build. Housing), 4(1), 1-10.
- Gupta, A. and Talha, M. (2015), "Recent development in modeling and analysis of functionally graded materials and structures", Prog. Aerosp. Sci., 79, 1-14. https://doi.org/10.1016/j.paerosci.2015.07.001.
- Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japan", Mater. Sci. Forum, 308-311, 509-514. https://doi.org/10.4028/www.scientific. net/MSF.308-311.509.
- Hosseini-Hashemi, S.H., Fadaee, M. and Atashipour, S.R. (2011), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure", Compos Struct, 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007.
- Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stresses, 25(7), 603-625. http://dx.doi.org/10.1080/01495730290074333.
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos Struct, 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001.
- Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng Comput, 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
- Kieback, B., Neubrand, A. and Riedel, H. (2003), "Processing techniques for functionally graded materials", Mater Sci Eng: A, 362(1-2), 81-106. https://doi.org/10.1016/S0921-5093(03)00578-1.
- Kirchhoff, G.R. (1850), "Uber das gleichgewicht und die bewegung einer elastischen Scheibe", J. Reine. Angew. Math. (Crelle's J), 40, 51-88.
- Klouche Djedid, I., Draiche, K., Guenaneche, B., Bousahla, A.A., Tounsi, A. and Adda Bedia, E.A. (2019), "On the modeling of dynamic behavior of composite plates using a simple nth-HSDT", Wind Struct., 29(6), 371-387. https://doi.org/10.12989/was.2019.29.6.371.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B. Eng., 28, 1-4. https://doi.org/10.1016/s1359-8368(96) 00016-9.
- Kumar, S. (2010), "Development of functionally graded materials by ultrasonic consolidation", CIRP J. Manuf. Sci. Technol., 3(1), 85-87. https://doi.org/10.1016/j.cirpj.2010.07.006.
- Li, M., Yan, R., Xu, L. and Guedes Soares, C. (2021), "A general framework of higher-order shear deformation theories with a novel unified plate model for composite laminated and FGM plates", Compos. Struct., 261, 113560. https://doi.org/10.1016/j.compstruct.2021.113560.
- Li, W. and Han, B. (2018), "Research and Application of Functionally Gradient Materials", IOP Conf Ser. Mater Sci Eng, 394, 022065. https://doi.org/10.1088/1757-899X/394/2/022065.
- Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
- Mahamood, R.M. and Akinlabi, E. (2012), "Functionally graded material: An overview", Proceedings of the World Congress on Engineering, 3, 4-6, WCE, London, UK.
- Mantari, J.L. and Granados, E.V. (2015), "Dynamic analysis of functionally graded plates using a novel FSDT", Compos. Part B: Eng., 75, 148-155. https://doi.org/10.1016/j.compositesb.2015.01.028.
- Mantari, J.L. and Guedes Soares, C. (2012), "Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory", Compos Struct, 94(6), 1991-2000. https://doi.org/10.1016/j.compstruct.2012.01.005.
- Mantari, J.L. and Guedes Soares, C. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. Part B Eng., 56, 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027.
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., Trans ASME, 18(1), 31-38.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), "Functionally graded materials: Design, processing and applications", Springer, New York, NY, 63-88.
- Mouaici, F., Benyoucef, S., Ait Atmane, H. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of nonhomogeneous plates using hyperbolic shear deformation theory", Wind Struct, 22(4), 429-454. https://doi.org/10.12989/was.2016.22.4.429.
- Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater Sci Eng. A, 362(1), 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1.
- Nguyen, H.N., Hong, T.T., Vinh, P.V., Quang, N.D. and Thom, D.V. (2019), "A refined simple first-order shear deformation theory for static bending and free vibration analysis of advanced composite plates", Materials, 12(25), 1-25. https://doi.org/10.3390/ma12152385.
- Nguyen, V.H., Nguyen, T.K., Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos Part B Eng, 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012.
- Omurtag, M.H., Ozutok, A., Akoz, A.Y. and Ozcelikors, Y. (1997), "Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gateaux differential", Int. J. Numer. Meth. Eng., 40(2), 295-317.
- Pan, E. (2003), "Exact solution for functionally graded anisotropic elastic composite laminates", J. Compos. Mater., 37(21), 1903-1920. https://doi.org/10.1177/002199803035565.
- Pham, T.D., Pham, Q.H., Phan, V.D., Nguyen, H.N. and Do, V.T. (2019), "Free vibration analysis of functionally graded shells using an edge-based smoothed finite element method", Symmetry, 11(5), 684. https://doi.org/10.3390/sym11050684.
- Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater Sci Eng: A, 362(1), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.
- Rajan, T. and Pai, B. (2009), "Development in manufacturing processes of functionally graded materials", Int. J. Adv. Eng. Appl., 2(5), 4-74.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. Trans. ASME, 12(2), 69-77.
- Reissner, E. (1986) "On a mixed variational theorem and on Shear Deformable Plate Theory", Int J Numer Methods in Eng, 23, 193-198. https://doi.org/10.1002/nme.1620230203.
- Remil, A., Benrahou, K.H., Draiche, K., Bousahla, A.A. and Tounsi, A. (2019), "A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates", Struct Eng. Mech., 70(3), 325-337.
- Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Pour Mohammadi, M.H. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach", Thin-Wall. Struct., 120, 366-377. http://dx.doi.org/10.1016/j.tws.2017.08.003.
- Sahla, M., Saidi, H. Draiche, K., Bousahla, A.A. Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos Struct, 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
- Sajjad, A., Bakar, W.Z., Basri, S. and Jamaludin, S.N. (2018), "Functionally graded materials: an overview of dental applications", World J. Dentistry, 9(2), 137-144. http://dx.doi.org/10.5005/jp-journals-10015-1523.
- Sayyad, A.S. and Ghugal, Y.M. (2012), "Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory", Appl Comput. Mech., 6(1), 65-82. http://hdl.handle.net/11025/1308. 1025/1308
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aeros. Sci. Technol., 72, 134-149. http://dx.doi.org/10.1016/j.ast.2017.11.004.
- Shen, H.S., Chen, X., Guo, L., Wu, L. and Huang, X.L. (2015), "Nonlinear vibration of FGM doubly curved panels resting on elastic foundations in thermal environments", Aerosp. Sci. Techn., 47, 434-446. https://doi.org/10.1016/j.ast.2015.10.011.
- Shinde, B.M. and Sayyad, A.S. (2017), "A quasi-3D polynomial shear and normal deformation theory for laminated composite, sandwich, and functionally graded beams", Mech Adv. Compos. Struct., 4(2), 139-152. https://dx.doi.org/10.22075/macs.2017.10806.1105.
- Sola, A., Bellucci, D. and Cannillo, V. (2016), "Functionally graded materials for orthopedic applications - an update on design and manufacturing", Biotechnol Adv, 34(5), 504-531. https://doi.org/10.1016/j.biotechadv.2015.12.013.
- Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos Struct, 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.
- Thai, H.T. and Kim, S.E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct. 2015.03.010.
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", J. Aeros. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
- Tran, L.V., Ferreira, A.J.M. and Nguyen, X.H. (2013), "Isogeometric analysis of functionally graded plates using higher-order shear deformation theory", Compos. Part B Eng., 51, 368-383. https://doi.org/10.1016/j.compositesb.2013.02.045.
- Wang, R. and Pan, E. (2011), "Three-dimensional modeling of functionally graded multiferroic composites", Mech. Adv. Mater. Struct., 18(1), 68-76. https://doi.org/10.1080/15376494.2010.519227.
- Wu, C.P. and Li, H. Y. (2013), "An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions", CMC-Comput. Mater. Continua, 34 (1), 27-62. https://doi.org/10.3970/cmc.2013.034.027
- Youcef, A., Bourada, M., Draiche, K., Boucham, B., Bourada, F. and Addou, F.Y. (2020), "Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories", Coupl. Syst. Mech., 9(3), 237-264. https://doi.org/10.12989/csm.2020.9.3.237.
- Yousfi, M., Ait Atmane, H., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct Eng Mech, 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.
- Zaitoun, M.W., Chikh, A., Tounsi, A., Sharif, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2023), "An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects", Eng. Comput., 39(2), 1127-1141. https://doi.org/10.1007/s00366-021-01498-1.
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model, 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
- Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Appl Math Model, 77(4), 197-214. http://dx.doi.org/10.1007/s00419-006-0084-y.
- Zhu, P. and Liew, K.M. (2011), "Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method", Compos Struct, 93(11), 2925-2944. https://doi.org/10.1016/j.compstruct.2011.05.011.