DOI QR코드

DOI QR Code

An optimized 2D kinematic model for flexure and free vibration analysis of functionally graded plates

  • Kada Draiche (Department of Civil Engineering, University of Tiaret) ;
  • Emrah Madenci (Necmettin Erbakan University, Department of Civil Engineering) ;
  • Ibrahim Klouche Djedid (Department of Civil Engineering, University of Tiaret) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2022.06.25
  • Accepted : 2024.10.22
  • Published : 2024.11.25

Abstract

In this paper, a new refined higher-order shear deformation theory "RHSDT" is presented for the flexure and free vibration analysis of functionally graded (FG) plates. The main feature of this model is that it relies on a simple and optimized 2D displacement field with only two unknown variables, even less than other shear deformation theories that involve three or more unknown variables. The current theory considers a hyperbolic non-linear shape function for satisfying exactly the zero shear stress conditions on the external plate surfaces without using a shear correction factor. The mechanical properties of FG plates are assumed to vary continuously through the thickness direction according to a power-law distribution "P-FGM" and an exponential-law distribution "E-FGM". The governing equations and boundary conditions of FG plates are derived by implementing Hamilton's principle. To verify the accuracy of the present theory, the analytical results computed for simply supported FG thick plates via the Navier-type technique are checked with those obtained by other shear deformation models and 3D elasticity solutions regarded in the literature. Additionally, the impact of significant parameters on the results of mechanical stresses and natural frequencies is discussed.

Keywords

References

  1. Abbas, S., Benguediab, S., Draiche, K., Bakora, A. and Benguediab, M. (2020), "An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates", Struct Eng Mech, 74(3), 365-380. https://doi.org/10.12989/sem.2020.74.3.365.
  2. Abualnour, M., Houari, MSA, Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos Struct, 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  3. Akavci, S.S. and A.H. Tanrikulu (2015). "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B: Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
  4. Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Appl Phys A, 123, 296. https://doi.org/10.1007/s00339-017-0854-0.
  5. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
  6. Belbachir, N., Draiche, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  7. Bennai, R., Fourn, H., Ait Atmane, H., Tounsi, A. and Bessaim, A., (2019), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.
  8. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl Mech Rev ASME, 60(5), 195-216. https://doi.org/10.1115/1.2777164.
  9. Birman, V., Keil, T. and Hosder, S. (2013), "Functionally graded materials in engineering", Struct. Interfaces Attachmen. Biology, 19-41, https://doi.org/10.1007/978-1-4614-3317-0_2.
  10. Bouchafa, A., Benzair, A., Tounsi, A., Draiche, K., Mechab, I. and Adda Bedia, E.A. (2010), "Analytical modeling of thermal residual stresses in exponential functionally graded material system", J Mater Des., 31(1), 560-563. https://doi.org/10.1016/j.matdes.2009.07.010.
  11. Brischetto, S. and Carrera E. (2010), "Advanced mixed theories for bending analysis of functionally graded plates", Comput Struct, 88, 1474-1483. https://doi.org/10.1016/j.compstruc.2008.04.004.
  12. Carrera, E. and Brischetto, S. (2011), "Modeling and analysis of functionally graded beams, plates and shells: Part II", Mech Adv Mater Struct, 18(1), 1-2, https://doi.org/10.1080/15376494.2011.537567.
  13. Cheng, Z.Q. and Batra, R.C. (2000), "Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates", J Sound Vib, 229(4), 879-895. https://doi.org/10.1006/jsvi.1999.2525.
  14. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  15. Belbachir, N., Draiche, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.3.081.
  16. Fazzolari, F.A. (2016), "Reissner's Mixed Variational Theorem and variable kinematics in the modelling of laminated composite and FGM doubly-curved shells", Compos B Eng, 89, 408-423. https://doi.org/10.1016/j.compositesb.2015.11.031.
  17. Ferreira, A.J.M., Batra, R.C. and Roque, C.M.C. (2005), "Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method", Compos Struct, 69(4), 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003.
  18. Ghavami, K., Rodriques, C.S. and Paciornik, S. (2003), "Bamboo: functionally graded composite material", Asian J. Civ. Eng. (Build. Housing), 4(1), 1-10.
  19. Gupta, A. and Talha, M. (2015), "Recent development in modeling and analysis of functionally graded materials and structures", Prog. Aerosp. Sci., 79, 1-14. https://doi.org/10.1016/j.paerosci.2015.07.001.
  20. Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japan", Mater. Sci. Forum, 308-311, 509-514. https://doi.org/10.4028/www.scientific. net/MSF.308-311.509.
  21. Hosseini-Hashemi, S.H., Fadaee, M. and Atashipour, S.R. (2011), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure", Compos Struct, 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007.
  22. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stresses, 25(7), 603-625. http://dx.doi.org/10.1080/01495730290074333.
  23. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos Struct, 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001.
  24. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng Comput, 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  25. Kieback, B., Neubrand, A. and Riedel, H. (2003), "Processing techniques for functionally graded materials", Mater Sci Eng: A, 362(1-2), 81-106. https://doi.org/10.1016/S0921-5093(03)00578-1.
  26. Kirchhoff, G.R. (1850), "Uber das gleichgewicht und die bewegung einer elastischen Scheibe", J. Reine. Angew. Math. (Crelle's J), 40, 51-88.
  27. Klouche Djedid, I., Draiche, K., Guenaneche, B., Bousahla, A.A., Tounsi, A. and Adda Bedia, E.A. (2019), "On the modeling of dynamic behavior of composite plates using a simple nth-HSDT", Wind Struct., 29(6), 371-387. https://doi.org/10.12989/was.2019.29.6.371.
  28. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B. Eng., 28, 1-4. https://doi.org/10.1016/s1359-8368(96) 00016-9.
  29. Kumar, S. (2010), "Development of functionally graded materials by ultrasonic consolidation", CIRP J. Manuf. Sci. Technol., 3(1), 85-87. https://doi.org/10.1016/j.cirpj.2010.07.006.
  30. Li, M., Yan, R., Xu, L. and Guedes Soares, C. (2021), "A general framework of higher-order shear deformation theories with a novel unified plate model for composite laminated and FGM plates", Compos. Struct., 261, 113560. https://doi.org/10.1016/j.compstruct.2021.113560.
  31. Li, W. and Han, B. (2018), "Research and Application of Functionally Gradient Materials", IOP Conf Ser. Mater Sci Eng, 394, 022065. https://doi.org/10.1088/1757-899X/394/2/022065.
  32. Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  33. Mahamood, R.M. and Akinlabi, E. (2012), "Functionally graded material: An overview", Proceedings of the World Congress on Engineering, 3, 4-6, WCE, London, UK.
  34. Mantari, J.L. and Granados, E.V. (2015), "Dynamic analysis of functionally graded plates using a novel FSDT", Compos. Part B: Eng., 75, 148-155. https://doi.org/10.1016/j.compositesb.2015.01.028.
  35. Mantari, J.L. and Guedes Soares, C. (2012), "Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory", Compos Struct, 94(6), 1991-2000. https://doi.org/10.1016/j.compstruct.2012.01.005.
  36. Mantari, J.L. and Guedes Soares, C. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. Part B Eng., 56, 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027.
  37. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., Trans ASME, 18(1), 31-38.
  38. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), "Functionally graded materials: Design, processing and applications", Springer, New York, NY, 63-88.
  39. Mouaici, F., Benyoucef, S., Ait Atmane, H. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of nonhomogeneous plates using hyperbolic shear deformation theory", Wind Struct, 22(4), 429-454. https://doi.org/10.12989/was.2016.22.4.429.
  40. Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater Sci Eng. A, 362(1), 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1.
  41. Nguyen, H.N., Hong, T.T., Vinh, P.V., Quang, N.D. and Thom, D.V. (2019), "A refined simple first-order shear deformation theory for static bending and free vibration analysis of advanced composite plates", Materials, 12(25), 1-25. https://doi.org/10.3390/ma12152385.
  42. Nguyen, V.H., Nguyen, T.K., Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos Part B Eng, 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012.
  43. Omurtag, M.H., Ozutok, A., Akoz, A.Y. and Ozcelikors, Y. (1997), "Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gateaux differential", Int. J. Numer. Meth. Eng., 40(2), 295-317.
  44. Pan, E. (2003), "Exact solution for functionally graded anisotropic elastic composite laminates", J. Compos. Mater., 37(21), 1903-1920. https://doi.org/10.1177/002199803035565.
  45. Pham, T.D., Pham, Q.H., Phan, V.D., Nguyen, H.N. and Do, V.T. (2019), "Free vibration analysis of functionally graded shells using an edge-based smoothed finite element method", Symmetry, 11(5), 684. https://doi.org/10.3390/sym11050684.
  46. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater Sci Eng: A, 362(1), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.
  47. Rajan, T. and Pai, B. (2009), "Development in manufacturing processes of functionally graded materials", Int. J. Adv. Eng. Appl., 2(5), 4-74.
  48. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684.
  49. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. Trans. ASME, 12(2), 69-77.
  50. Reissner, E. (1986) "On a mixed variational theorem and on Shear Deformable Plate Theory", Int J Numer Methods in Eng, 23, 193-198. https://doi.org/10.1002/nme.1620230203.
  51. Remil, A., Benrahou, K.H., Draiche, K., Bousahla, A.A. and Tounsi, A. (2019), "A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates", Struct Eng. Mech., 70(3), 325-337.
  52. Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Pour Mohammadi, M.H. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach", Thin-Wall. Struct., 120, 366-377. http://dx.doi.org/10.1016/j.tws.2017.08.003.
  53. Sahla, M., Saidi, H. Draiche, K., Bousahla, A.A. Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos Struct, 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  54. Sajjad, A., Bakar, W.Z., Basri, S. and Jamaludin, S.N. (2018), "Functionally graded materials: an overview of dental applications", World J. Dentistry, 9(2), 137-144. http://dx.doi.org/10.5005/jp-journals-10015-1523.
  55. Sayyad, A.S. and Ghugal, Y.M. (2012), "Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory", Appl Comput. Mech., 6(1), 65-82. http://hdl.handle.net/11025/1308. 1025/1308
  56. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aeros. Sci. Technol., 72, 134-149. http://dx.doi.org/10.1016/j.ast.2017.11.004.
  57. Shen, H.S., Chen, X., Guo, L., Wu, L. and Huang, X.L. (2015), "Nonlinear vibration of FGM doubly curved panels resting on elastic foundations in thermal environments", Aerosp. Sci. Techn., 47, 434-446. https://doi.org/10.1016/j.ast.2015.10.011.
  58. Shinde, B.M. and Sayyad, A.S. (2017), "A quasi-3D polynomial shear and normal deformation theory for laminated composite, sandwich, and functionally graded beams", Mech Adv. Compos. Struct., 4(2), 139-152. https://dx.doi.org/10.22075/macs.2017.10806.1105.
  59. Sola, A., Bellucci, D. and Cannillo, V. (2016), "Functionally graded materials for orthopedic applications - an update on design and manufacturing", Biotechnol Adv, 34(5), 504-531. https://doi.org/10.1016/j.biotechadv.2015.12.013.
  60. Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos Struct, 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.
  61. Thai, H.T. and Kim, S.E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct. 2015.03.010.
  62. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", J. Aeros. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  63. Tran, L.V., Ferreira, A.J.M. and Nguyen, X.H. (2013), "Isogeometric analysis of functionally graded plates using higher-order shear deformation theory", Compos. Part B Eng., 51, 368-383. https://doi.org/10.1016/j.compositesb.2013.02.045.
  64. Wang, R. and Pan, E. (2011), "Three-dimensional modeling of functionally graded multiferroic composites", Mech. Adv. Mater. Struct., 18(1), 68-76. https://doi.org/10.1080/15376494.2010.519227.
  65. Wu, C.P. and Li, H. Y. (2013), "An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions", CMC-Comput. Mater. Continua, 34 (1), 27-62. https://doi.org/10.3970/cmc.2013.034.027
  66. Youcef, A., Bourada, M., Draiche, K., Boucham, B., Bourada, F. and Addou, F.Y. (2020), "Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories", Coupl. Syst. Mech., 9(3), 237-264. https://doi.org/10.12989/csm.2020.9.3.237.
  67. Yousfi, M., Ait Atmane, H., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct Eng Mech, 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.
  68. Zaitoun, M.W., Chikh, A., Tounsi, A., Sharif, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2023), "An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects", Eng. Comput., 39(2), 1127-1141. https://doi.org/10.1007/s00366-021-01498-1.
  69. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model, 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  70. Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Appl Math Model, 77(4), 197-214. http://dx.doi.org/10.1007/s00419-006-0084-y.
  71. Zhu, P. and Liew, K.M. (2011), "Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method", Compos Struct, 93(11), 2925-2944. https://doi.org/10.1016/j.compstruct.2011.05.011.