DOI QR코드

DOI QR Code

Axially loaded reinforced concrete composite columns using steel angles and strips: An experimental and analytical assessment

  • Nehal M. Ayash (Department of of Civil Engineering at Helwan University) ;
  • Ahmed H. Ali (Department of of Civil Engineering at Helwan University) ;
  • Ahmed Abdellatif (Department of of Civil Engineering at Helwan University) ;
  • Hala Mamdouh (Department of of Civil Engineering at Helwan University)
  • Received : 2024.04.16
  • Accepted : 2024.11.10
  • Published : 2024.11.25

Abstract

This paper investigates the utilization of composite columns achieved by incorporating four steel angles at the corners of columns, interconnected with transverse plates. The experimental program involves ten columns, varying slenderness ratio, angle thickness, and transverse reinforcement spacing to evaluate the effect of variable parameters on the load-carrying capacity, Failure modes and behavior of these type of composite columns. Also, The objective of this research is revised the analytical calculations from the different international codes/standards to test their reliability in predicting the load-carrying capacity of composite columns compared to experimental results. Next, using ANSYS and validated finite element method, a parametric analysis is carried out for cases under eccentric loading. According to results, Steel-angled composite columns perform better than regular columns, demonstrating increases in load carrying capability because of improved confined concrete within steel angles. As the thickness of the steel angles increased (reinforcement ratio increased from 2.91% to 4.75%), increasing load capacity to 28% and lowering axial and lateral displacements to 20% and 30%, respectively. There was a difference in the experimental and finite element ' load capacities at failure that ranged from (-3%) to (+6%). The effect of slenderness ratio in columns with eccentric load is clear that the load capacities of the slender columns are 10% less than those of the shorter ones when axial eccentric loads are taken into account according to parametric investigation. In addition, both AISC and ECP 205 included the slenderness ratio when estimating load capacity; however, AISC was less cautious than ECP 205. Both ACI 318 and ECP 203 neglect the slenderness ratio when calculating load capacity that ECP 203 understates while ACI 318 code overstates load capability.

Keywords

Acknowledgement

The authors are grateful to the technical team at the structural laboratory in the Department of Civil Engineering at Helwan University for their valuable contributions to this research.

References

  1. ACI (American Concrete Institute), Building Code Requirements for Structural Concrete, Farming-ton Hills; MI, USA.
  2. AISC360-10 (2021), Specification for Structural Steel Buildings. American Institute of Steel Construction.
  3. ANSYS R19.0 (2019), Release 19.0 Documentation for ANSYS, in ANSYS, Canonsburg; PA, USA.
  4. Badalamenti, V., Campione, G. and Mangiavillano, M.L. (2010), "Simplified model for compressive behavior of concrete columns strengthened by steel angles and strips", J. Eng. Mech., 136(2), 230-238. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000069.
  5. Chaitanya, N., Rao, V.R. and Reddy, M.A.K. (2018), "Performance of composite reinforced short column under axial loading", Int. J. Eng. Tech., 7(3), 1376-1380. ttps://doi.org/10.14419/ijet.v7i3.13680.
  6. Ding, J., Zou, Y., Wang, C.Q., Zhou, H.F. and Li, T.Q. (2020), "Investigation on flexural behavior of a new-type composite column with steel angles", J. Asian Archi. Build. Eng., 19(5), 458-479. https://doi.org/10.1080/13467581.2020.1748038.
  7. ECP 203-2020 (2020), Egyptian Code of Practice for Design and Construction of Concrete Structures Code, Standing Committee to prepare the Egyptian, HBRC; Cairo, Egypt.
  8. ECP 359-2007 (2021), Egyptian Code of Practice for Steel Construction (Load and Resistance Factor Design).
  9. Eom, T.S., Hwang, H.J., Park, H.G., Lee, C.N. and Kim, H.S. (2014), "Flexural test for steel-concrete composite members using prefabricated steel angles", J. Struct. Eng., 140(4), 04013094. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000898.
  10. Eom, T.S., Lim, J.J. and Kim, J.W. (2021), "Axial compressive behavior of concrete-encased high-strength steel angle columns", J. Struct. Eng., 147(4), 04021021. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002908.
  11. Hwang, H.J. (2018), Prefabricated Steel-Teinforced Concrete Composite Column, In New Trends in Structural Engineering, IntechOpen.
  12. Hwang, H.J., Eom, T.S., Park, H.G. and Lee, S.H. (2016), "Axial load and cyclic lateral load tests for composite columns with steel angles", J. Struct. Eng., 142(5), 04016001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002908.
  13. Ibrahim, A.A., Sheikh, M.N. and Muhammad N.S.H. (2018), "Axial compressive behavior of steel equal angle section-reinforced square high-strength concrete column", Faculty Eng. Inform. Sci.- Papers: Part B, 2712. http://dx.doi.org/10.14359/51702375.
  14. Kim, C.S. and Hwang, H.J. (2018), "Numerical investigation on load-carrying capacity of high-strength concrete-encased steel angle columns", Int. J. Concrete Struct. Mater., 12, 1-17. https://doi.org/10.1186/s40069-018-0238-7.
  15. Kim, C.S., Park, H.G., Chung, K.S. and Choi, I.R. (2014), "Eccentric axial load capacity of high-strength steel-concrete composite columns of various sectional shapes", J. Struct. Eng., 140(4), 04013091. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000879.
  16. Kim, H.J., Hwang, H.J. and Park, H.G. (2021), "Flexural testing for composite members with bolt-connected steel angles", Eng. Struct., 230, 111638.
  17. Kim, H.J., Hwang, H.J., Park, H.G. and Kim, D.K. (2020), "Concentric axial load test for composite columns using bolt-connected steel angles", Eng. Struct., 214, 110650. ttps://doi.org/10.1016/j.engstruct.2020.110650.
  18. Kim, M.H., Kim, H.G., Ju, Y.K. and Kim, S.D. (2011), "Experimental study on the axial behavior of yLRC composite columns", Proc. Eng., 14, 2058-2063. ttps://doi.org/10.1016/j.proeng.2011.07.258.
  19. Lacki, P., Derlatka, A. and Kasza, P. (2018), "Comparison of steel-concrete composite column and steel column", Compos. Struct., 202, 82-88. https://doi.org/10.1016/j.comp. 2017.11.055.
  20. Lai, B., Liew, J.R., Venkateshwaran, A., Li, S. and Xiong, M. (2020), "Assessment of high-strength concrete encased steel composite columns subject to axial compression", J. Construct. Steel Res., 164, 105765. https://doi.org/10.1016/j.jcsr.2019.105765.
  21. Metawei, H., Arafa, D. and Elkashif, A.F. (2020), "Performance of moderate concrete column reinforced with steel equal angle section under concentric load", Al-Azhar Univ. Civ. Eng. Res. Magazine (CERM), 42(1).
  22. Razvi, S.W.N. and Shaikh, M.G. (2018), "Effect of confinement on behavior of short concrete column", Proc. Manuf., 20, 563-570. https://doi.org/10.1016/j.promfg.2018.02.084.
  23. Rong, C. and Shi, Q. (2020), "Behaviour of angle steel frame confined concrete columns under axial compression", Construc. Build. Mater., 241, 118034. https://doi.org/10.1016/j.conbuildmat.2020.118034.
  24. Su, C., Wang, X., Ding, L. and Wu, Z. (2023), "Seismic degradation behavior of steel-FRP composite bar reinforced concrete beams in marine environment based on experimental and numerical investigation", Compos. Struct., 313, 116949. https://doi.org/10.1016/j.compstruct.2023.116949.
  25. Wei, Y., Zhu, C., Miao, K., Chai, J. and Zheng, K. (2022), "Compressive behavior of rectangular concrete-filled fiber-reinforced polymer and steel composite tube columns with stress-release grooves", Compos. Struct., 281, 114984. https://doi.org/10.1016/j.compstruct.2021.114984.
  26. Xu, T., Liu, J. and Guo, Y. (2021), "Design method of short circular FRP-steel composite tubed RC columns under eccentric compression", Compos. Struct., 262, 113359. https://doi.org/10.1016/j.compstruct.2020.113359.
  27. Zhang, Y., Liu, Y., Xin, H. and He, J. (2019), "Numerical parametric study on ultimate load and ductility of concrete encased equal-leg angle steel composite columns", Eng. Struct., 200, 109679.