DOI QR코드

DOI QR Code

Image reconstruction method of gamma emission tomography based on prior-aware information and machine learning for partial-defect detection of PWR-type spent nuclear fuel

  • Hyung-Joo Choi (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Jaewon Jeong (ARALE Laboratory Co. Ltd) ;
  • Hakjae Lee (ARALE Laboratory Co. Ltd) ;
  • Seong Gon Kim (Samsung Electronics Co. Ltd) ;
  • Jae Joon Ahn (Division of Data Science, Yonsei University) ;
  • Hyun Cheol Lee (Nuclear Material Analysis Team, Korea Institute of Nuclear Nonproliferation and Control (KINAC)) ;
  • Chul Hee Min (Department of Radiation Convergence Engineering, Yonsei University)
  • Received : 2024.03.20
  • Accepted : 2024.06.22
  • Published : 2024.11.25

Abstract

Spent nuclear fuel (SNF) requires accurate and effective supervision to prevent radiation release to the public and the environment. Gamma emission tomography (GET) has been used to inspect partial-defects at the pin-by-pin level through the acquisition of tomographic images. However, due to the high density of nuclear fuel rods, GET shows relatively low accuracy for the central region. This study proposes an image reconstruction method for the internal fuels based on Monte Carlo simulation and machine learning algorithm. The gammas from the SNF were measured with the GET device and the sinograms were reconstructed with Maximum-Likelihood Expectation-Maximization (MLEM) with prior-aware information of SNF, and image quality was improved with the machine learning technique. Our results show that the MLEM with prior-aware information could dramatically improve the image quality and the denoising technique with the machine learning could clearly correct the over-and under-estimation. Based on the results of quantitative validation of the proposed reconstruction method, the pattern classification accuracy was calculated to be about 100 %. These techniques enabled the image acquisition of the central fuel rod and increased accuracy in partial defect detection. For further study, the performance of the proposed reconstruction method will be evaluated based on the experiment data.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106073), the Korea Institute of Energy Technology Evaluation and Planning (KETEP), and the Ministry of Trade Industry & Energy (MOTIE) of the Republic of Korea (No. 20214000000070).

References

  1. I.A.E. Agency, Nuclear Power Reactors in the World, International Atomic Energy Agency, 2023. https://www.iaea.org/publications/15485/nuclear-power-reactors-in-the-world. 
  2. I.A.E. Agency, Storing Spent Fuel until Transport to Reprocessing or Disposal, International Atomic Energy Agency, 2019, in: https://www.iaea.org/publications/12302/storing-spent-fuel-until-transport-to-reprocessing-or-disposal. 
  3. J. Lim, W. Choi, Preliminary data analysis of surrogate fuel-loaded road transportation tests under normal conditions of transport, Nucl. Eng. Technol. 54 (2022) 4030-4048, https://doi.org/10.1016/j.net.2022.06.023. 
  4. L. Rodriguez-Penalonga, B.Y. Moratilla Soria, A review of the nuclear fuel cycle strategies and the spent nuclear fuel management technologies, Energies 10 (2017) 1235. 
  5. E.L. Smith, S. Jacobsson, V. Mozin, P. Jansson, E. Miller, T. Honkamaa, N. Deshmukh, T.A. White, R. Wittman, H. Trellue, S. Grape, A. Davour, S. Vaccaro, P. Andersson, S. Holcombe, A viability study of gamma emission tomography for spent fuel verification : JNT 1955 phase I technical report. https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-306584, 2016. 
  6. E.A. Miller, L.E. Smith, R.S. Wittman, L.W. Campbell, N.S. Deshmukh, M. A. Zalavadia, M.A. Batie, V.V. Mozin, Hybrid Gama Emission Tomography (HGET): FY16 Annual Report, Pacific Northwest National Lab. (PNNL), Richland, WA (United States), 2017, https://doi.org/10.2172/1390447. 
  7. M. Mayorov, T. White, A. Lebrun, J. Brutscher, J. Keubler, A. Birnbaum, V. Ivanov, T. Honkamaa, P. Peura, J. Dahlberg, Gamma emission tomography for the inspection of spent nuclear fuel, in: 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC), 2017, pp. 1-2, https://doi.org/10.1109/NSSMIC.2017.8533017. 
  8. T. Honkamaa, F. Levai, A. Turunen, R. Berndt, S. Vaccaro, P. Schwalbach, A prototype for passive gamma emission tomography, in: Proc. Symp. Int, Safeguards, 2014, in: https://inis.iaea.org/collection/NCLCollectionStore/_External/safeguards/symposium/2014/home/eproceedings/sg2014-papers/000189.pdf. 
  9. H.J. Choi, I.S. Kang, K.B. Kim, Y.H. Chung, C.H. Min, Optimization of single-photon emission computed tomography system for fast verification of spent fuel assembly: a Monte Carlo study, J. Inst. Met. 14 (2019) T07002, https://doi.org/10.1088/1748-0221/14/07/T07002. 
  10. H. Choi, B.-W. Cheon, M.K. Baek, H. Chung, Y.H. Chung, S.H. You, C.H. Min, H. J. Choi, Experimental evaluation of fuel rod pattern analysis in fuel assembly using Yonsei single-photon emission computed tomography (YSECT), Nucl. Eng. Technol. 54 (2022) 1982-1990, https://doi.org/10.1016/j.net.2021.12.035. 
  11. M.K. Baek, H.J. Choi, K.B. Kim, J.J. Ahn, C.H. Min, Y.H. Chung, Preliminary results of a single photon emission computed tomography (SPECT) detector for inspection of spent fuel assembly, Radiat. Phys. Chem. 197 (2022) 110162. 
  12. C. B'elanger-Champagne, P. Peura, P. Eerola, T. Honkamaa, T. White, M. Mayorov, P. Dendooven, Effect of gamma-ray energy on image quality in passive gamma emission tomography of spent nuclear fuel, IEEE Trans. Nucl. Sci. 66 (2018) 487-496. 
  13. R. Backholm, T.A. Bubba, C. B'elanger-Champagne, T. Helin, P. Dendooven, S. Siltanen, Simultaneous reconstruction of emission and attenuation in passive gamma emission tomography of spent nuclear fuel. https://doi.org/10.48550/arXiv.1905.03849, 2019. 
  14. M. Fang, Y. Altmann, D. Della Latta, M. Salvatori, A. Di Fulvio, Quantitative imaging and automated fuel pin identification for passive gamma emission tomography, Sci. Rep. 11 (2021) 2442. 
  15. S. Shiba, H. Sagara, Passive gamma emission tomography with ordered subset expectation maximization method, Ann. Nucl. Energy 150 (2021) 107823. 
  16. S. Shiba, H. Sagara, Iterative reconstruction algorithm comparison using Poisson noise distributed sinogram data in passive gamma emission tomography, J. Nucl. Sci. Technol. 58 (2021) 659-666. 
  17. R. Virta, R. Backholm, T.A. Bubba, T. Helin, M. Moring, S. Siltanen, P. Dendooven, T. Honkamaa, Fuel rod classification from Passive Gamma Emission Tomography (PGET) of spent nuclear fuel assemblies. https://doi.org/10.48550/arXiv.2009.11617, 2020. 
  18. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez ' Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lamp'en, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (2003) 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8. 
  19. S.M. Bowman, L.C. Leal, O.W. Hermann, C.V. Parks, ORIGEN-ARP, A fast and easy-to-use source term generation tool, J. Nucl. Sci. Technol. 37 (2000) 575-579, https://doi.org/10.1080/00223131.2000.10874953. 
  20. C.B. Lee, D.H. Kim, Y.M. Kim, Y.S. Yang, Y.H. Jeong, J.I. Kim, O.H. Kim, H.D. Chae, Performance and safety tests of high burnup PWR UO{sub 2} fuel(I) : fuel manufacturing, irradiation history, transportation and non-destructive examination. https://www.osti.gov/etdeweb/biblio/20450923, 2003. 
  21. N. Petoussi-Henss, D. Satoh, A. Endo, K.F. Eckerman, W.E. Bolch, J. Hunt, J.T. M. Jansen, C.H. Kim, C. Lee, K. Saito, H. Schlattl, Y.S. Yeom, S.J. Yoo, ICRP Publication 144: Dose Coefficients for External Exposures to Environmental Sources, 2020 (n.d.), https://journals.sagepub.com/doi/full/10.1177/0146645320906277. 
  22. H.C. Lee, B.T. Koo, C.I. Choi, C.S. Park, J. Kwon, H.-S. Kim, H. Chung, C.H. Min, Evaluation of source identification method based on energy-weighting level with portal monitoring system using plastic scintillator, J. Radiat. Prot. Res 45 (2020) 117-129, https://doi.org/10.14407/jrpr.2020.45.3.117. 
  23. A.J. Rockmore, A. Macovski, A maximum likelihood approach to emission image reconstruction from projections, IEEE Trans. Nucl. Sci. 23 (1976) 1428-1432, https://doi.org/10.1109/TNS.1976.4328496. 
  24. L.A. Shepp, Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imag. 1 (1982) 113-122, https://doi.org/10.1109/TMI.1982.4307558. 
  25. R. Yao, T. Ma, Y. Shao, Derivation of system matrix from simulation data for an animal SPECT with slit-slat collimator, IEEE Trans. Nucl. Sci. 56 (2009) 2651-2658, https://doi.org/10.1109/TNS.2009.2022940. 
  26. R. Rossa, A. Borella, N. Giani, Comparison of machine learning models for the detection of partial defects in spent nuclear fuel, Ann. Nucl. Energy 147 (2020) 107680, https://doi.org/10.1016/j.anucene.2020.107680. 
  27. D. Haussler, M. Warmuth, The probably approximately correct (PAC) and other learning models, in: The Mathematics of Generalization, CRC Press, 1995. 
  28. Convolutional neural networks: an overview and application in radiology, Insights into Imaging. 9 (2018) 611-629. https://link.springer.com/article/10.1007/s13244-018-0639-9. 
  29. J.K. Basu, D. Bhattacharyya, T. Kim, Use of artificial neural network, Pattern Recogn 4 (2010). https://api.semanticscholar.org/CorpusID:9126950. 
  30. K. O'Shea, R. Nash, An introduction to convolutional neural networks. https://doi.org/10.48550/arXiv.1511.08458, 2015. 
  31. Z. Peng, N. Gao, B. Wu, Z. Chen, X.G. Xu, A review of computational phantoms for quality assurance in radiology and radiotherapy in the deep-learning era, J. Radiat. Prot. Res 47 (2022) 111-133, https://doi.org/10.14407/jrpr.2021.00402. 
  32. B. Jeon, J. Kim, Y. Yu, M. Moon, Comparison of machine learning-based radioisotope identifiers for plastic scintillation detector, J. Radiat. Prot. Res 46 (2021) 204-212, https://doi.org/10.14407/jrpr.2021.00206. 
  33. X. Guo, X. Liu, E. Zhu, J. Yin, Deep clustering with convolutional autoencoders, in: D. Liu, S. Xie, Y. Li, D. Zhao, E.-S.M. El-Alfy (Eds.), Neural Information Processing, Springer International Publishing, Cham, 2017, pp. 373-382, https://doi.org/10.1007/978-3-319-70096-0_39. 
  34. S.H. Choi, H.J. Choi, C.H. Min, Y.H. Chung, J.J. Ahn, Development of de-noised image reconstruction technique using Convolutional AutoEncoder for fast monitoring of fuel assemblies, Nucl. Eng. Technol. 53 (2021) 888-893, https://doi.org/10.1016/j.net.2020.08.020. 
  35. S. Seong, S. Choi, J.J. Ahn, H. Choi, Y.H. Chung, S.H. You, Y.S. Yeom, H.J. Choi, C. H. Min, Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly, Nucl. Eng. Technol. 54 (2022) 3943-3948, https://doi.org/10.1016/j.net.2022.05.013.