DOI QR코드

DOI QR Code

Advanced interpretation of the SPHERE irradiation experiment with neutronics and fuel performance codes

  • 투고 : 2024.03.21
  • 심사 : 2024.06.20
  • 발행 : 2024.11.25

초록

The SPHERE experiment aimed at studying the behaviour of Minor Actinide-bearing Driver Fuel (U,Pu,Am)O2-x by comparing sphere-packed and pelletized fuels. The irradiation experiment was performed in the High Flux Reactor at Petten from August 2013 to April 2015, and was followed by post-irradiation examinations up to mid-2017. The present work consists in a new analysis of the SPHERE experiment, focusing on the pelletized fuel, by the means of both neutronics and fuel performance codes. This study is performed in the frame of the European Project PATRICIA. The adopted methodology and the main results achieved, assessed in particular against inert gas-related experimental data, are presented in the paper.

키워드

과제정보

This work has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945077 (PATRICIA Project).

참고문헌

  1. E. D'Agata, et al., SPHERE: irradiation of sphere-pac fuel of UPuO2-x containing 3% Americium, Nucl. Eng. Des. 275 (2014) 300-311, https://doi.org/10.1016/j.nucengdes.2014.05.021. 
  2. A. Gallais-During, et al., Outcomes of the PELGRIMM project on Am-bearing fuel in pelletized and spherepac forms, J. Nucl. Mater. 512 (2018) 214-226, https://doi.org/10.1016/j.jnucmat.2018.10.016. 
  3. European Commission, FAIRFUELS Euratom Project, 2015. https://cordis.europa.eu/project/id/232624. 
  4. European Commission, PELGRIMM Euratom Project, 2017. https://cordis.europa.eu/project/id/295664. 
  5. European Union's Horizon 2020 Research and Innovation programme, Patricia - partitioning and transmuter research Initiative in a Collaborative Innovation action. https://patricia-h2020.eu/, 2020. 
  6. J. Leppanen, Serpent - a continuous-energy Monte Carlo reactor physics burnup calculation code, User's Manual (2015). http://montecarlo.vtt.fi/download/Serpent_manual.pdf. 
  7. A. Rineiski, V. Sinitsa, C4P-TRAIN neutronics tool for supporting Safety studies of Innovative fast reactors. PHYTRA4 - the Fourth International Conference on Physics and Technology of Reactors and Applications, on CD-ROM, Marrakech, Morocco, 2018. 
  8. A. Santamarina, et al., The JEFF-3.1.1 nuclear data library, ISBN 978-92-64-99074-6, NEA No. 6807, https://www.oecd-nea.org/jcms/pl_14470/the-jeff-3-1-1-nuclear-data-library?details=true, 2009. 
  9. R.E. Alcouffe, et al., "DANTSYS: A Diffusion Accelerated Neutral Particle Transport Code System", LA-12969- M, Los-Alamos, 1995. 
  10. P.K. Romano, et al., OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048. 
  11. J.W. Eaton, et al., GNU Octave - A High-Level Interactive Language for Numerical Computations, 2016. Edition 4 for Octave version 4.2.1. 
  12. T. Okawa, et al., Fuel behavior analysis code FEMAXI-FBR development and validation for core disruptive accident, Prog. Nucl. Energy 82 (2015) 80-85, https://doi.org/10.1016/j.pnucene.2014.11.002. 
  13. M. Lainet, et al., GERMINAL, a fuel performance code of the PLEIADES platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors, J. Nucl. Mater. 516 (2019) 30-53, https://doi.org/10.1016/j.jnucmat.2018.12.030. 
  14. A. Magni, et al., The TRANSURANUS fuel performance code, in: Nuclear Power Plant Design and Analysis Codes - Development, Validation and Application, 2021-1, pp. 161-205, https://doi.org/10.1016/B978-0-12-818190-4.00008-5. 
  15. D. Pizzocri, et al., SCIANTIX open-source code for fission gas behaviour: objectives and foreseen developments, in: IAEA Technical Meeting on the Development and Application of Open-Source Modelling and Simulation Tools for Nuclear Reactors, 2022. Milano, Italy. 
  16. B. Labonne, et al., Development of an interatomic potential for mixed uranium-americium oxides and application to the determination of the structural and thermodynamic properties of (U,Am)O2 with americium contents below 50, J. Nucl. Mater. 579 (2023), https://doi.org/10.1016/j.jnucmat.2023.154390. 
  17. A. Magni, et al., Modelling of thermal conductivity and melting behaviour of minor actinide-MOX fuels and assessment against experimental and molecular dynamics data, J. Nucl. Mater. 557 (2021-2), https://doi.org/10.1016/j.jnucmat.2021.153312. 
  18. J.A. Kulesza, et al., MCNP code version 6.3.0 - Theory & user manual, LA-UR-22-30006, Rev 1 (2022). https://mcnp.lanl.gov/pdf_files/TechReport_2022_LANL_LA-UR-22-30006Rev.1_KuleszaAdamsEtAl.pdf. 
  19. P. Botazzoli, et al., Extension and validation of the TRANSURANUS burn-up model for helium production in high burn-up LWR fuels, J. Nucl. Mater. 419 (2011) 329-338, https://doi.org/10.1016/j.jnucmat.2011.05.040. 
  20. K. Lassmann, F. Hohlefeld, The revised URGAP model to describe the gap conductance between fuel and cladding, Nucl. Eng. Des. 103 (1987) 215-221, https://doi.org/10.1016/0029-5493(87)90275-5. 
  21. M. Charles, M. Bruet, Gap conductance in a fuel rod: modelling of the FURET and CONTACT results, in: IAEA, International Working Group on Water Reactor Fuel Performance and Technology, IWGFPT/19, "Water Reactor Fuel Element Performance Computer Modelling", Meeting Proceedings, 1984. https://inis.iaea.org/collection/NCLCollectionStore/_Public/16/057/16057359.pdf. 
  22. G. Zullo, et al., The SCIANTIX code for fission gas behaviour: Status, upgrades, separate-effect validation, and future developments, J. Nucl. Mater. 587 (2023), https://doi.org/10.1016/j.jnucmat.2023.154744. 
  23. J.-Ch Sublet, et al., FISPACT-II: an advanced simulation system for Activation, transmutation and material modelling, Nucl. Data Sheets 139 (2017) pp77-137, https://doi.org/10.1016/j.nds.2017.01.002. 
  24. A. Scolaro, et al., Investigation on the effect of eccentricity for fuel disc irradiation tests, Nucl. Eng. Technol. 53 (2021) 1602-1611, https://doi.org/10.1016/j.net.2020.11.003. 
  25. N. Chauvin, et al., Benchmark Study on Innovative Fuels for Fast Reactors with Fuel Performance Codes, 2023. NEA/NSC/R(2022)5, https://www.oecd-nea.org/jcms/pl_79983/benchmark-study-on-innovative-fuels-for-fast-reactors-with-fuel-performance-codes. 
  26. J. Lavarenne, et al., Burn-up dependent modeling of fuel-to-clad gap conductance and temperature predictions for mixed-oxide fuel in the ESFR-SMART core, J. Nucl. Eng. Radiat. Sci. 8 (2022), https://doi.org/10.1115/1.4050479. 
  27. G.S. Chang, Cadmium depletion impacts on hardening neutron spectrum for advanced fuel testing in ATR, in: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil, 2011. ISBN 978-85-63688-00-2, https://inis.iaea.org/collection/NCLCollectionStore/_Public/48/031/48031790.pdf?r=1. 
  28. H.J. MacLean, S.L. Hayes, Irradiation of Metallic and Oxide Fuels for Actinide Transmutation in the ATR, 2007. Global 2007, Boise, Idaho, USA, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=31c494e9cd15a8b950f4fd4d98a74ab962a3c7be. 
  29. D.S. Dutt, R.B. Baker, Siex - a correlated code for the prediction of Liquid metal fast breeder reactor (LMFBR) fuel thermal performance, HEDL-TME 74-55 UC-79b, https://doi.org/10.2172/4181413, 1975. 
  30. Y. Philipponneau, Thermal conductivity of (U,Pu)O2-x mixed oxide fuel, J. Nucl. Mater. 188 (1992) pp194-197, https://doi.org/10.1016/0022-3115(92)90470-6. 
  31. T. Motta, D.R. Olander, Light Water Reactor Materials, Volume I: Fundamentals, American Nuclear Society Scientific Publications, 2017. 
  32. E. Federici, et al., Helium production and behaviour in nuclear fuels during irradiation in LWR, in: Proceedings of the International LWR Fuel Performance Meeting, San Francisco, USA, 30 Sep. - 3 Oct. 2007, 2007, pp. 664-673 (paper 1057). 
  33. M. Suzuki, H. Saitou, Light water reactor fuel analysis code FEMAXI-6 (Ver.1) - detailed structure and User's manual, JAEA/Data/Code 2005-003 (2005). https://jopss.jaea.go.jp/pdfdata/JAEA-Data-Code-2005-003.pdf.