DOI QR코드

DOI QR Code

Application of coupled annular nanoplates in basketball: Enhancing energy absorption and vibration control for advanced sports equipment

  • Cheng Qiu (School of Police Law Enforcement Abilities Training, Peoples Public Security University of China) ;
  • Zhiyuan Tan (Faculty of Sport and Physical Education, University of Belgrade) ;
  • Yufei Qi (Department of Physical Education and Research, Central South University) ;
  • M. Kaffash (Department of Civil Engineering, Malaysia University)
  • Received : 2024.03.25
  • Accepted : 2024.11.01
  • Published : 2024.11.25

Abstract

In this paper, we will study the application of coupled annular nanoplates on basketball equipment to enhance energy absorption and vibration control by incorporating a viscoelastic substrate between the two nanoplates and get their dynamic behavior and possible way for performance enhancement of advanced sports material. Higher-order shear deformation theory is used to formulate the mathematical model, while the finite element method (FEM) is employed to estimate vibrational frequencies and energy absorption. Our results highlight how the critical parameters would affect the vibration and energy absorption characteristics of coupled annular nanoplates on basketball equipment. In fact, the findings in this paper have demonstrated the possibilities for nanostructured materials to enhance durability, energy efficiency, and vibration isolation in basketball sports equipment. The use of such advanced materials in conjunction with the theoretical framework given in the work will allow development pathways toward high-performance sporting goods that are optimized for dissipative and impact-resistant energy. This will provide innovations in sports engineering.

Keywords

Acknowledgement

The 2023 National Social Science Foundation Youth Program, grant number: 23CTY007

References

  1. Aljaloud, A.S.M., Smida, K. Ameen, H.F.M., Albedah, M.A. and Tlili, I. (2023), "Investigation of phase change and heat transfer in water/copper oxide nanofluid enclosed in a cylindrical tank with porous medium: A molecular dynamics approach", Eng. Anal. Bound. Elem., 146, 284-291. https://doi.org/10.1016/j.enganabound.2022.10.034.
  2. Banawas, S., Ibrahim, T.K., Tlili, I. and Le Q.H. (2023), "Reinforced Calcium phosphate cements with zinc by changes in initial properties: A molecular dynamics simulation", Eng. Anal. Bound. Elem., 147, 11-21. https://doi.org/10.1016/j.enganabound.2022.11.033.
  3. Bahrami, A. and Teimourian, A. (2017), "Small scale effect on vibration and wave power reflection in circular annular nanoplates", Compos. B. Eng, 109, 15, 214-226. https://doi.org/10.1016/j.compositesb.2016.09.107
  4. Huo, J., Zhang, G., Ghabussi, A. and Habibi M. (2022), "Bending analysis of FG-GPLRC axisymmetric circular/annular sector plates by considering elastic foundation and horizontal friction force using 3D-poroelasticity theory", Compos. Struct, 276(15), 114438. https://doi.org/10.1016/j.compstruct.2021.114438
  5. Huang, X., Chang, L., Zhao, H. and Cai, Z. (2022). "Study on craniocerebral dynamics response and helmet protective performance under the blast waves", Mater. Des., 224, 111408. https://doi.org/10.1016/j.matdes.2022.111408
  6. Pham, Q.H., Tran, T.T., Tran, V., Nguyen P.C and Thoi, T.N., (2022), "Free vibration of functionally graded porous non-uniform thickness annular-nanoplates resting on elastic foundation using ES-MITC3 element", Alex. Eng. J, 61, 1788-1802. https://doi.org/10.1016/j.aej. 2021.06.082
  7. Saini, R. and Pradyumna, S. (2023), "Nonlocal boundaries and paradoxes in thermoelastic vibrations of functionally graded Non-Uniform cantilever nanobeams and annular nanoplates", Structures, 55, 1292-1305. https://doi.org/10.1016/j.istruc.2023.06.095.
  8. Taj, M., Mohamed, A., Khadimallah, M.H., Mahmood, S., Safeer, M., Rashid, Y., Ahmad, M., Naeem, M.N., Asghar, S., Ponnore, J., Qahtani, A.A., Mahmoud, S.R., Afaf, S.A, and Tounsi, A. (2021), "Instability analysis of microfilaments with and without surface effects using Euler theory", Adv. Nano Res, 10(6), 509-516. https://doi.org/10.12989/anr.2021.10.6.509
  9. Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res, 9(2), 69-82. https://doi.org/10.12989/anr.2020.9.2.069
  10. Vinyas, M., Sandeep, A.S. and Nguyen-Thoi, T. (2019), "A finite element-based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory", J. Intell. Mater. Syst. Struct., 30(16). https://doi.org/10.1177/1045389X19862386
  11. Yang, Y., Hu, Z.L. and Li, X.F. (2021), "Axisymmetric bending and vibration of circular nanoplates with surface stresses", Thin Wall. Struct., 166, 108086. https://doi.org/10.1016/j.tws.2021.108086
  12. Yang, C., Li, Z., Xu, P. and Huang, H. (2024), "Recognition and optimisation method of impact deformation patterns based on point cloud and deep clustering: Applied to thin-walled tubes", J. Ind. Inform. Integr., 40, 100607. https://doi.org/10.1016/j.jii.2024.100607
  13. Zhang, X., Liu, Y., Chen, X., Li, Z. and Su, C. (2023), "Adaptive pseudoinverse control for constrained hysteretic nonlinear systems and its application on dielectric elastomer actuator", IEEE/ASME T Mechatron., 28(4), 2142-2154. https://doi.org/10.1109/TMECH.2022.3231263