DOI QR코드

DOI QR Code

Green synthesis of potassium silicate nanoparticles from biomass ashes and their antimicrobial potential

  • Abhishek Sharma (Biomaterials and Sensor Laboratory, Department of Physics, Ch. Charan Singh University) ;
  • Anirudh kumar (Biomaterials and Sensor Laboratory, Department of Physics, Ch. Charan Singh University) ;
  • Vikas Kumar (Biomaterials and Sensor Laboratory, Department of Physics, Ch. Charan Singh University) ;
  • Garima Sharma (Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Vini Madathil (Department of Molecular Biology and Genetics, Gujarat Biotechnology University) ;
  • DVN Sudheer Pamidimari (Department of Molecular Biology and Genetics, Gujarat Biotechnology University) ;
  • Beer Pal Singh (Biomaterials and Sensor Laboratory, Department of Physics, Ch. Charan Singh University) ;
  • Satendra Pal Singh (Department of Physics, S.S.V. College, (Affl. CCS University, Meerut)) ;
  • Ashish Ranjan Sharma (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University, Chuncheon Sacred Heart Hospital) ;
  • Sanjeev Kumar Sharma (Biomaterials and Sensor Laboratory, Department of Physics, Ch. Charan Singh University)
  • Received : 2024.05.27
  • Accepted : 2024.10.16
  • Published : 2024.11.25

Abstract

Biogenic potassium silicate (K2SiO3) NPs were synthesized from the biomasses of walnut shell (w-K2Si), pinewood stem (p-K2SiO3), and sugarcane bagasse (s-K2SiO3) by ambient fiery and KOH-assisted thermal process. The crystallite size (D) of w-K2SiO3, p-K2SiO3, and s-K2SiO3 NPs were determined to be 73 nm, 53 nm and 47 nm using Debye-Scherrer's formula. The varied strain of all samples was observed in the 0.284 to 0.301 range. Microstructure showed the cubical geometry with an irregular grain size of K2SiO3 NPs, while the SAED pattern confirmed the polycrystalline nature. The Eg of w-K2SiO3, p-K2SiO3, and s-K2SiO3 NPs was determined from Tauc's plot to be 3.66 eV, 3.75 eV, and 3.78 eV, which are closely matched to be 3.78 eV, 3.88 eV, and 3.79 eV estimated from the XPS core-level analysis. The antibacterial activity of w-K2SiO3, p-K2SiO3, and sK2SiO3 NPs was investigated against E. coli and S. aureus bacteria. Compared to K2SiO3 NPs, the s-K2SiO3 were found to be highly toxic against E. coli and S. aureus and completely inhibited the growth of both organisms within 6 h. The findings represent the novel low-cost development of K2SiO3 NPs with potent antibacterial activities.

Keywords

Acknowledgement

Anirudh Kumar acknowledges the CSIR-SRF (08/096-0012/2020/EMR-I) provided for the Ph.D. dissertation work. Vikas Kumar acknowledges the Centre of Excellence Project to provide the Research Associate fellowship. Sanjeev K. Sharma (SKS) acknowledges the financial support from the Department of Higher Education, Government of Uttar Pradesh, India for sanctioning the projects (108/2021/2585/Sattar-4-2021-4(28)/2021/20) under the Research & Development program and (78/2022/1984/Sattar-4-2022-003-70-4099/7/022/19) under Centre of Excellence for Research and innovation of smart materials for Sensor applications. SKS also acknowledges the financial support from the sanctioned project, CST/D-1524, by CST-UP, and C.C.S. University-funded project (Ref. No. Dev./1043/29.06.2022) to implement research and innovation. Ashish R. Sharma: This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1C1C1008694).

References

  1. Ao, W., Fu, J., Mao, X., Wahab, N., Ran, C., Kang, Q., Liu, Y., Jiang, Z., Dai, J. and Bi, X. (2021), "Characterization and analysis of activated carbons prepared from furfural residues by microwave-assisted pyrolysis and activation", Fuel Proc. Technol., 213, 106640. https://doi.org/10.1016/j.fuproc.2020.106640
  2. Asyikin, A.S., Halimah, M.K., Latif, A.A., Faznny, M.F. and Nazrin, S.N. (2020), "Physical, structural and optical properties of bio-silica borotellurite glass system doped with samarium oxide nanoparticles", J. Non-Cryst. Solids, 529, 119777. https://doi.org/10.1016/j.jnoncrysol.2019.119777
  3. Azlan, M.N., Halimah, M.K., Shafinas, S.Z. and Daud, W.M. (2014), "Polarizability and optical basicity of Er3+ ions doped tellurite based glasses", Chalcogen. Lett., 11(7), 319-335.
  4. Balaz, M., Balazova, L., Kovacova, M., Daneu, N., Salayova, A., Bedlovicova, Z. and Tkacikova, L. (2019), "The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles", Adv. Nano Res., 7(2), 125-134. https://doi.org/10.12989/ANR.2019.7.2.125
  5. Bhat, J.A., Shivaraj, S.M., Singh, P., Navadagi, D.B., Tripathi, D.K., Dash, P.K., Solanke, A.U., Sonah, H. and Deshmukh, R. (2019), "Role of silicon in mitigation of heavy metal stresses in crop plants", Plants, 8(3), 71-91. https://doi.org/10.3390/plants8030071
  6. Billingham, J., Breen, C. and Yarwood, J. (1997), "Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: An in situ study using ATR-FTIR", Vib. Spectrosc., 14(1), 19-34. https://doi.org/10.1016/S0924-2031(96)00074-4
  7. Bogireddy, N.K.R., Gomez, L.M., Osorio-Roman, I. and Agarwal, V. (2017), "Synthesis of gold nanoparticles using Coffea Arabica fruit extract", Adv. Nano Res., 5(3), 253-260. https://doi.org/10.12989/ANR.2017.5.3.253
  8. Carlisle, E.M. (1986), "Silicon as an essential trace element in animal nutrition", Ciba Found. Symp., 121, 123-139. https://doi.org/10.1002/9780470513323.ch8
  9. Chen, A., Mu, W. and Chen, Y. (2014), "Compressive elastic moduli and polishing performance of non-rigid core/shell structured PS/SiO2 composite abrasives evaluated by AFM", Appl. Surf. Sci., 290, 433-439. https://doi.org/10.1016/j.apsusc.2013.11.100
  10. Dallagnol, L.J., Rodrigues, F.A., Pascholati, S.F., Fortunato, A.A. and Camargo, L.E.A. (2015), "Comparison of root and foliar applications of potassium silicate in potentiating post-infection defences of melon against powdery mildew", Plant Pathol., 64(5), 1085-1093. https://doi.org/10.1111/ppa.12346
  11. Danchin, A. and Nikel, P.I. (2019), "Why nature chose potassium", J. Mol. Evol., 87(9-10), 271-288. https://doi.org/10.1007/s00239-019-09915-2
  12. de Oliveira, K.G., de Lima, R.R.S., de Longe, C., Bicudo, T.d.C., Sales, R.V. and de Carvalho, L.S. (2022), "Sodium and potassium silicate-based catalysts prepared using sand silica concerning biodiesel production from waste oil", Arab. J. Chem., 15(2), 103603. https://doi.org/10.1016/j.arabjc.2021.103603
  13. Deng, W., Kang, T., Liu, H., Zhang, J., Wang, N., Lu, N., Ma, Y., Umar, A. and Guo, Z. (2018), "Potassium hydroxide activated and nitrogen doped graphene with enhanced supercapacitive behavior", Sci. Adv. Mater., 10(7), 937-949. https://doi.org/10.1166/sam.2018.3279
  14. Deshmukh, R.K., Ma, J.F. and Belanger, R.R. (2017), "Role of silicon in plants", Front. Plant Sci., 8, 1858. https://doi.org/10.3389/fpls.2017.01858
  15. Dogan, M.F., Yildiz, O., Arslan, S.O. and Ulusoy, K.G. (2019), "Potassium channels in vascular smooth muscle: A pathophysiological and pharmacological perspective", Fundam. Clin. Pharmacol., 33(5), 504-523. https://doi.org/10.1111/fcp.12461
  16. Dousti, M.R., Sahar, M.R., Ghoshal, S.K., Amjad, R.J. and Samavati, A.R. (2013), "Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass", J. Mol. Struct., 1035, 6-12. https://doi.org/10.1016/j.molstruc.2012.09.023
  17. El Badawy, A.M., Silva, R.G., Morris, B., Scheckel, K.G., Suidan, M.T. and Tolaymat, T.M. (2011), "Surface charge-dependent toxicity of silver nanoparticles", Environ. Sci. Technol., 45(1), 283-287. https://doi.org/10.1021/es1034188
  18. Epstein, E. (2009), "Silicon: its manifold roles in plants", Ann. Appl. Biol., 155(2), 155-160. https://doi.org/10.1111/j.1744-7348.2009.00343.x
  19. Franca, A.A., Schultz, J., Borges, R., Wypych, F. and Mangrich, A.S. (2017), "Rice husk ash as raw material for the synthesis of silicon and potassium slow-release fertilizer", J. Brazil. Chem. Soc., 28, 2211-2217. http://doi.org/10.21577/0103-5053.20170072
  20. Gandolfi, M.G., Pagani, S., Perut, F., Ciapetti, G., Baldini, N., Mongiorgi, R. and Prati, C. (2008), "Innovative silicate-based cements for endodontics: A study of osteoblast-like cell response", J. Biomed. Mater. Res. A., 87(2), 477-486. http://doi.org/10.1002/jbm.a.31795
  21. Ghiasi Moaser, A., Afkham, A.G., Khoshnavazi, R. and Rostamnia, S. (2023), "Nickel substituted polyoxometalates in layered double hydroxides as metal-based nanomaterial of POM-LDH for green catalysis effects", Sci. Rep., 13(1), 4114. https://doi.org/10.1038/s41598-023-31356-7
  22. Gong, H.S. and Kim, H.G. (2013), "Formation and photoluminescence of Y2O3-H3BO3: Eu3+ powders by mechanical alloying", Curr. Appl. Phys., 13(3), 453-456. https://doi.org/10.1016/j.cap.2012.09.005
  23. Halimah, M.K., Daud, W.M., Sidek, H.A.A., Zaidan, A.W. and Zainal, A.S. (2010), "Optical properties of ternary tellurite glasses", Mater. Sci. Pol., 28(1), 173-180.
  24. He, F.J. and MacGregor, G.A. (2008), "Beneficial effects of potassium on human health", Physiol. Plant., 133(4), 725-735. https://doi.org/10.1111/j.1399-3054.2007.01033.x
  25. Hongwen, M.A., Jing, Y., Shuangqing, S.U., Meitang, L.I.U., Hong, Z., Yingbin, W., Hongbin, Q.I., Pan, Z. and Wengui, Y.A.O. (2015), "20 years advances in preparation of potassium salts from potassic rocks: a review", Acta Geol. Sin., 89(6), 2058-2071. https://doi.org/10.1111/1755-6724.12617
  26. Hu, L., Wu, H., Zhu, T., Fu, C., He, J., Ying, P. and Zhao, X. (2015), "Tuning multiscale microstructures to enhance thermoelectric performance of n-type Bismuth-Telluride-based solid solutions", Adv. Energy Mater., 5(17), 1500411. https://doi.org/10.1002/aenm.201500411
  27. Imran, M., Shahzad, K., Munir, S., Wasim, M. and Hussnain, A. (2020), "Synthesis and characterization of potassium silicate fertilizer using fly ashes of bituminous and sub-bituminous and lignite coal", J. Pak. Int. Chem. Eng., 48(2), 47-54. https://doi.org/10.54693/piche.04826
  28. Jawad, A.H. and Abdulhameed, A.S. (2020), "Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation", Energy Ecol. Environ., 5(6), 456-469. https://doi.org/10.1007/s40974-020-00177-z
  29. Jones, L.H.P. and Handreck, K.A. (1967), "Silica in soils, plants, and animals", Adv. Agron., 19, 107-149. https://doi.org/10.1016/S0065-2113(08)60734-8
  30. Jurkic, L.M., Cepanec, I., Pavelic, S.K. and Pavelic, K. (2013), "Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy", Nutr. Metab., 10, 1-12. https://doi.org/10.1186/1743-7075-10-2
  31. Kamimura, T., Sasaki, K., Hoi Wong, M., Krishnamurthy, D., Kuramata, A., Masui, T., Yamakoshi, S. and Higashiwaki, M. (2014), "Band alignment and electrical properties of Al2O3/β-Ga2O3 heterojunctions", Appl. Phys. Lett., 104(19), 192104. https://doi.org/10.1063/1.4876920
  32. Kang, H.G., Jeong, J.M., Hong, S.B., Lee, G.Y., Kim, J.W. and Choi, B.G. (2019), "Scalable exfoliation and activation of graphite into porous graphene using microwaves for high-performance supercapacitors", J. Alloys Compd., 770, 458-465. https://doi.org/10.1016/j.jallcom.2018.08.042
  33. Kumar, A. and Mohanty, T. (2014), "Electro-optic modulation induced enhancement in photocatalytic activity of N-doped TiO2 thin films", J. Phys. Chem. C, 118(13), 7130-7138. https://doi.org/10.1021/jp4103977
  34. Kumar, S., Sahay, L.K., Jha, A.K. and Prasad, K. (2013), "Synthesis and characterization of nanocrystalline Al0.5Ag0.5 TiO3 powder", Adv. Nano Res., 1(4), 211-218. https://doi.org/10.12989/ANR.2013.1.4.211
  35. Kumchompoo, J. and Puntharod, R. (2022), "Synthesis and characterization of lithium silicate and potassium silicate from rice husk ash by hydrothermal-microwave method and application for biodiesel catalyst", Suranaree J. Sci. Technol., 29(3), 1-7.
  36. Li, M., Wu, W., Qiao, R., Tan, L., Li, Z. and Zhang, Y. (2016), "Ag-decorated Fe3O4@ SiO2 core-shell nanospheres: seed-mediated growth preparation and their antibacterial activity during the consecutive recycling", J. Alloys Compd., 676, 113-119. https://doi.org/10.1016/j.jallcom.2016.03.191
  37. Li, Y., Zeng, G., Yang, G., Wu, Q., Zhang, H., Li, W. and Qian, Y. (2019), "Synthesis, characterization and properties of ATO/ potassium silicate film prepared by twice spray pyrolysis", J. Alloys Compd., 772, 240-246. https://doi.org/10.1016/j.jallcom.2018.09.016
  38. Ma, H.P., Yang, J.H., Yang, J.G., Zhu, L.Y., Huang, W., Yuan, G.J., Feng, J.J., Jen, T.C. and Lu, H.L. (2019), "Systematic study of the SiOx film with different stoichiometry by plasma-enhanced atomic layer deposition and its application in SiOx/SiO2 super-lattice", Nanomaterials, 9(1), 55. https://doi.org/10.3390/nano9010055
  39. Mason, B. (1966), "Composition of the Earth", Nature, 211, 616-618. https://doi.org/10.1038/211616a0
  40. Mastalska-Poplawska, J., Izak, P., Goral, Z. and Stempkowska, A. (2020), "Rheological parameters of polymer-silicate gels", J. Phys. Conf. Ser., 1527, 012035. https://doi.org/10.1088/1742-6596/1527/1/012035
  41. Menzies, J., Bowen, P., Ehret, D. and Glass, A.D.M. (1992), "Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash", J. Am. Soc. Hortic. Sci., 117(6), 902-905. https://doi.org/10.21273/JASHS.117.6.902
  42. Mughal, B., Zaidi, S.Z.J., Zhang, X. and Hassan, S.U. (2021), "Biogenic nanoparticles: Synthesis, characterisation and applications", Appl. Sci., 11(6), 2598. https://doi.org/10.3390/app11062598
  43. Nandiyanto, A.B.D., Permatasari, N., Sucahya, T.N., Abdullah, A.G. and Hasanah, L. (2017), "Synthesis of potassium silicate nanoparticles from rice straw ash using a flame-assisted spray-pyrolysis method", IOP Conf. Ser. Mater. Sci. Eng., 180, 012133. https://doi.org/10.1088/1757-899X/180/1/012133
  44. Nichols, M.T., Li, W., Pei, D., Antonelli, G.A., Lin, Q., Banna, S., Nishi, Y. and Shohet, J.L. (2014), "Measurement of bandgap energies in low-k organosilicates", J. Appl. Phys., 115(9), 094105. https://doi.org/10.1063/1.4867644
  45. Ohira, T. and Yamamoto, O. (2012), "Correlation between antibacterial activity and crystallite size on ceramics", Chem. Eng. Sci., 68(1), 355-361. https://doi.org/10.1016/j.ces.2011.09.043
  46. Pandey, G.K. and Mahiwal, S. (2020), Role of Potassium in Plants, Springer, New York, U.S.A.
  47. Pascal, C., Pascal, J.L., Favier, F., Elidrissi Moubtassim, M.L. and Payen, C. (1999), "Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior", Chem. Mater., 11(1), 141-147. https://doi.org/10.1021/cm980742f
  48. Pedziwiatr-Werbicka, E., Milowska, K., Podlas, M., Marcinkowska, M., Ferenc, M., Brahmi, Y., Katir, N., Majoral, J.P., Felczak, A. and Boruszewska, A. (2014), "Oleochemical-tethered SBA-15-type silicates with tunable nanoscopic order, carboxylic surface, and hydrophobic framework: cellular toxicity, hemolysis, and antibacterial activity", Chem. Eur. J., 20(31), 9596-9606. https://doi.org/10.1002/chem.201402583
  49. Permatasari, N., Sucahya, T.N. and Nandiyanto, A.B.D. (2016), "Agricultural wastes as a source of silica material", Indones. J. Sci. Technol., 1(1), 82-106. https://doi.org/10.17509/ijost.v1i1.2216
  50. Reddy, R.R., Ahammed, Y.N., Gopal, K.R. and Raghuram, D.V. (1998), "Optical electronegativity and refractive index of materials", Opt. Mater., 10(2), 95-100. https://doi.org/10.1016/S0925-3467(97)00171-7
  51. Sharma, S.K., Pamidimarri, D.V.N.S., Kim, D.Y. and Na, J.G. (2015), "Y-doped zinc oxide (YZO) nanoflowers, microstructural analysis and test their antibacterial activity", Mater. Sci. Eng. C, 53, 104-110. https://doi.org/10.1016/j.msec.2015.04.007
  52. Simonsen, M.E., Sonderby, C., Li, Z. and Sogaard, E.G. (2009), "XPS and FT-IR investigation of silicate polymers", J. Mater. Sci., 44, 2079-2088. https://doi.org/10.1007/s10853-009-3270-9
  53. Sommer, S., Raidt, T., Fischer, B.M., Katzenberg, F., Tiller, J.C. and Koch, M. (2016), "THz-spectroscopy on high density polyethylene with different crystallinity", J. Infrared Millim. Terahertz Waves, 37, 189-197. https://doi.org/10.1007/s10762-015-0219-8
  54. Tallury, P., Payton, K. and Santra, S. (2008), "Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications", Nanomedicine, 3(4), 579-92. https://doi.org/10.2217/17435889.3.4.579.
  55. Tamuly, J., Bhattacharjya, D. and Saikia, B.K. (2022), "Graphene/graphene derivatives from coal, biomass, and wastes: Synthesis, energy applications, and perspectives", Energ. Fuel., 36(21), 12847-12874. https://doi.org/10.1021/acs.energyfuels.2c00976
  56. Tannen, R.L. (1983), "Effects of potassium on blood pressure control", Ann. Intern. Med., 98(5 Part 2), 773-780. https://doi.org/10.7326/0003-4819-98-5-773
  57. Tolj, D., Ivsic, T., Zivkovic, I., Semeniuk, K., Martino, E., Akrap, A., Reddy, P., Klebel-Knobloch, B., Loncaric, I. and Forro, L. (2021), "Synthesis of murunskite single crystals: A bridge between cuprates and pnictides", Appl. Mater. Today., 24, 101096. https://doi.org/10.1016/j.apmt.2021.101096
  58. Van Horn, D.J., Van Horn, M.L., Barrett, J.E., Gooseff, M.N., Altrichter, A.E., Geyer, K.M., Zeglin, L.H. and Takacs-Vesbach, C.D. (2013), "Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: role of geographic scale", PLoS One, 8(6), e66103. https://doi.org/10.1371/journal.pone.0066103
  59. Venkatraman, S.K. and Swamiappan, S. (2020), "Review on calcium-and magnesium-based silicates for bone tissue engineering applications", J. Biomed. Mater. Res. A, 108(7), 1546-1562. https://doi.org/10.1002/jbm.a.36925
  60. Walker, A.J. and Whitehead, N. (1966), "Differences in molecular species present in aqueous potassium silicate solutions and their efficiency as adhesives for phosphors on glass", J. Appl. Chem., 16(8), 230-238. https://doi.org/10.1002/jctb.5010160804
  61. Wang, L., Hu, C. and Shao, L. (2017), "The antimicrobial activity of nanoparticles: Present situation and prospects for the future", Int. J. Nanomed., 12, 1227-1249. https://doi.org/10.2147/IJN.S121956
  62. Wang, M., Zheng, Q., Shen, Q. and Guo, S. (2013), "The critical role of potassium in plant stress response", Int. J. Mol. Sci., 14(4), 7370-7390. https://doi.org/10.3390/ijms14047370
  63. Wu, B.C., Wei, C.K., Hsueh, N.S. and Ding, S.J. (2015), "Comparative cell attachment, cytotoxicity and antibacterial activity of radiopaque dicalcium silicate cement and white-coloured mineral trioxide aggregate", Int. Endod. J., 48(3), 268-276. https://doi.org/10.1111/iej.12310.
  64. Wu, L. and Liu, M. (2007), "Slow-release potassium silicate fertilizer with the function of superabsorbent and water retention", Ind. Eng. Chem. Res., 46(20), 6494-6500. https://doi.org/10.1021/ie070573l
  65. Xu, Y., Chang, L. and Hu, Y.H. (2017), "KOH-assisted microwave post-treatment of activated carbon for efficient symmetrical double-layer capacitors", Int. J. Energy Res., 41(5), 728-735. https://doi.org/10.1002/er.3676
  66. Youssry, S.M., Abd Elkodous, M., Kumar, R., Kawamura, G., Tan, W.K. and Matsuda, A. (2023), "Thermal-assisted synthesis of reduced graphene oxide-embedded Ni nanoparticles as high-performance electrode material for supercapacitor", Electrochim. Acta, 463, 142814. https://doi.org/10.1016/j.electacta.2023.142814
  67. Zeng, H., Li, Z., Cai, W., Cao, B., Liu, P. and Yang, S. (2007), "Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions", J. Phys. Chem. B, 111(51), 14311-14317. https://doi.org/10.1021/jp0770413
  68. Zhang, F., Saito, K., Tanaka, T., Nishio, M., Arita, M. and Guo, Q. (2014), "Wide bandgap engineering of (AlGa) 2O3 films", Appl. Phys. Lett., 105(16), 162107. https://doi.org/10.1063/1.4900522
  69. Zhu, Y.J., Guo, X.X. and Sham, T.K. (2017), "Calcium silicate-based drug delivery systems", Expert Opin. Drug Deliv., 14(2), 215-228. https://doi.org/10.1080/17425247.2016.1214566