DOI QR코드

DOI QR Code

Exploring comfort and vibration dampening in fashion design in fabrics with innovative use of nanoparticle additives

  • Jing Li (College of Art and Design, Sanming University) ;
  • Yufeng Xin (College of Art and Design, Sanming University) ;
  • T.T. Murmy (Faculty of Mechanical Engineering, Ristab Company)
  • 투고 : 2024.02.12
  • 심사 : 2024.10.16
  • 발행 : 2024.11.25

초록

Recently, fashion design demanded more comfort and functionality. Addition of nanoparticles into fabrics can be one new method of enhancing comfort with vibration dampening. This paper investigates the influence of the addition of nanoparticles on the vibrational properties of textiles that can be used in fashion. The vibration properties of the nanoparticle-enhanced fabrics are mathematically modeled. Shaking and magnetic stirring with ultrasonic treatments are considered in combination with mechanical mixing before the production of fabric samples in order to overcome the problem of nanoparticle dispersion. Sinusoidal shear deformation theory is used for the structural modeling, whereas the Mori-Tanaka model is used to estimate the effective properties of the nanoparticle-reinforced fabrics with consideration of the agglomeration effect. Energy methods enable the derivation of the motion equations for the calculation of the vibration frequencies of the fabric. This study investigates the effects of nanoparticle volume percentage, their agglomeration, and fabric structure on the characteristics related to vibration damping and comfort. It follows that increased nanoparticle content improves vibration damping, thereby opening possibilities for comfortable and durable garment designs.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (Name: Research on Intelligent Design Technology of 3D Animation Toy Paper Pattern, Number: 61972340).

참고문헌

  1. Allahyari, S.M.R., Shokravi, M. and Murmy, T.T. (2024), "Modeling of truncated nanocompositeconical shell structures for dynamic stability response", Struct. Eng. Mech., 91(3), 325-334. https://doi.org/10.12989/sem.2024.91.3.325.
  2. Hong, S.K., Oh, D.W., Kong, S.K. and Lee, Y.J. (2020), "Investigation of divergence tunnel excavation according to horizontal offsets between tunnels", Geomech. Eng., 21, 111-122. http://doi.org/10.12989/gae.2020.21.2.111.
  3. Hughes, K.J., Iyer, K.A., Bird, R.E., Ivanov, J., Banerjee, S., Georges, G. and Zhou, Q.A. (2024), "Review of carbon nanotube research and development: Materials and emerging applications", ACS Appl. Nano Mater., 7(16), 18695-18713. https://doi.org/10.1021/acsanm.4c02721.
  4. Khien, P. B., Nguyen, D. D., Tounsi, A. and Tuyen, B. V. (2024), "Nonlocal Mindlin plate theory with the application for vibration and bending analysis of nanoplates with the flexoelectricity effect", Adv. Nano Res., 16(1), 27-40. https://doi.org/10.12989/anr.2024.16.1.027.
  5. Liu, X., Huo, J.L., Li, T.T., Peng, H.K., Lin, J.T. and Lou, C.W. (2019), "Investigation of the shear thickening fluid encapsulation in an orifice coagulation bath", Polym., 11(3), 519. https://doi.org/10.3390/polym11030519.
  6. Madenci, E., Gulcu, S. and Draiche, K. (2024), "Analytical nonlocal elasticity solution and ANN approximate for free vibration response of layered carbon nanotube reinforced composite beams", Adv. Nano Res., 16(3), 251-263. https://doi.org/10.12989/anr.2024.16.3.251.
  7. Maestri, G., Ferreira, L.B. and Steffens, F. (2023), "Recent advances in piezoelectric textile materials: A brief literature review", J. Eng. Fibers Fabr., 18, 15589250231151242. https://doi.org/10.1177/15589250231151242.
  8. Mehar, K. and Panda, S.K. (2023), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. http://doi.org/10.12989/anr.2023.7.3.181.
  9. Ozdemir, O., Ural, H. and Wahrhaftig, A.M. (2024), "Static stability and vibration response of rotating carbon-nanotube-reinforced composite beams in thermal environment", Adv. Nano Res., 16(5), 445-458. https://doi.org/10.12989/anr.2024.16.5.445.
  10. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2023), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. http://doi.org/10.12989/anr.2023.7.6.419.
  11. Popescu, M. and Ungureanu, C. (2023), "Green nanomaterials for smart textiles dedicated to environmental and biomedical applications", Materials, 16(11), 4075. https://doi.org/10.3390/ma16114075.
  12. Shah, M.A., Pirzada, B.M., Price, G., Shibiru, A.L. and Qurashi, A. (2022), "Applications of nanotechnology in smart textile industry: A critical review", J. Adv. Res., 38, 55-75. https://doi.org/10.1016/j.jare.2022.01.008.
  13. Syduzzaman, M., Hassan, A., Anik, H.R., Akter, M. and Islam, M.R. (2023), "Nanotechnology for high-performance textiles: A promising frontier for innovation", ChemNanoMat, 9, e202300205. https://doi.org/10.1002/cnma.202300205.
  14. Xu, J., Chang, L., Chen, T., Ren, T., Zhang, Y. and Cai, Z. (2023), "Study of the bending properties of variable stiffness chain mail fabrics", Compos. Struct., 322, 117369. https://doi.org/10.1016/j.compstruct.2023.117369
  15. Xu, J., Zhang, Y., Huang, Y., Chang, L., Chen, T., Ren, T. and Cai, Z. (2024), "Dynamic response of chain mail fabrics with variable stiffness", Int. J. Mech. Sci., 264, 108840. https://doi.org/10.1016/j.ijmecsci.2023.108840
  16. Yang, Y. and Li, H. (2020), "Experimental study on shear behaviors of Partial Precast Steel Reinforced Concrete beams", Steel Compos. Struct., 37(5), 605-620. http://doi.org/10.12989/scs.2020.37.5.605.
  17. Zhang, J. and Zhang, C. (2023), "Using viscoelastic materials to mitigate earthquake-induced pounding between adjacent frames with unequal height considering soil-structure interactions", Soil Dyn. Earthq. Eng., 172, 107988. https://doi.org/10.1016/j.soildyn.2023.107988.
  18. Zhang, S., Ji, Y. and Ma, C. (2021), "Nanoscale quantitative mechanical mapping of polydimethylsiloxane in a time-dependent fashion", Adv. Nano Res., 10(3), 253-261. https://doi.org/10.12989/anr.2021.10.3.253.