DOI QR코드

DOI QR Code

Dynamic response with fraction laws: Eigen solution of clamped-simply supported rotating shell

  • Emad Ghandourah (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Hamdi Ayed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Monzoor Ahmad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Lahcen Azrar (Department of Applied Mathematics and Informatics, ENSAM, Mohammed V University of Rabat) ;
  • Abir Mouldi (Department of Industrial Engineering, College of Engineering, King Khalid University)
  • Received : 2022.02.03
  • Accepted : 2024.10.02
  • Published : 2024.11.25

Abstract

The shell problem in this work is modeled as a rotating cylindrical shell with three distinct volume fraction rules. There is a connection between polynomial, exponential, and trigonometric fraction laws and the governing equations for shell motion. The fundamental natural frequency is examined for several parameters, including height-radius and length-to-diameter ratios. The resulting backward and forward frequencies rise with rising height-to-radius ratios, whereas frequencies decrease with increasing length-to-radius ratios. Furthermore, as the angular speed increases, the forward and reverse frequencies decrease and increase, respectively. By using MATLAB coding, the eigen solutions of the frequency equation have been found. The findings for the clamped simply supported condition have been taken out of this numerical procedure in order to examine the properties of shell vibration. The generated results provide evidence for the applicability of the current shell model and are also supported by previously published material.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/210/45.

References

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct, 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147 
  2. Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235. https://doi.org/10.1007/s00707-009-0141-z 
  3. Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243 
  4. AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., 25(1), 111. https://doi.org/10.12989/sss.2020.25.1.111. 
  5. Amabili, M., Pellicano, F. and Paidoussis, M.P. (1998), "Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid", J. Fluids Struct., 12(7), 883-918. https://doi.org/10.1006/jfls.1998.0173 
  6. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct Syst, 18, 787-800. http://doi.org/10.12989/sss.2016.18.4.787 
  7. Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct Syst, 19, 33-38. https://doi.org/10.12989/sss.2017.19.1.033 
  8. Arshad, S.H., Naeem, M.N., Sultana, N., Iqbal, Z. and Shah, A.G. (2011), "Effects of exponential volume fraction law on the natural frequencies of FGM cylindrical shells under various boundary conditions", Arch Appl Mech, 81, 999-1016. https://doi.org/10.1007/s00419-010-0460-5 
  9. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443 
  10. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197 
  11. Chai, S., Wang, S., Liu, C., Liu, X., Liu, T. and Yang, R. (2024), "A visual measurement algorithm for vibration displacement of rotating body using semantic segmentation network", Expert Syst. Appl., 237, 121306. https://doi.org/10.1016/j.eswa.2023.121306 
  12. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160(1), 137-160. https://doi.org/10.1006/jsvi.1993.1010 
  13. Chen, R., Zhao, B., Xin, Q., Niu, X., Xie, Z., Lu, X. and Zou, D. (2024), "Analysis of transient lubrication and wear coupling behaviors considering thermal effect and journal misalignment for main bearings under dynamic load", Wear, 554-555, 205478. https://doi.org/10.1016/j.wear.2024.205478 
  14. Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0 
  15. Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Trans. ASME J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733 
  16. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135 
  17. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039 
  18. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139 
  19. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.00 
  20. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020a), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631 
  21. Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020b), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283 
  22. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495. https://doi.org/10.1016/S0022-460X(85)80067-5 
  23. Ghosh, A, Miyamoto, Y, Reimanis, I, and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications", Ceram. Transact. AM Ceram Soc, 76(71-89). 
  24. Golabchi, Hadi, Reza Kolahchi, and Mahmood Rabani Bidgoli, (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concr., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431 
  25. Hussain, M. (2022), "Controlling of ring based structure of rotating FG shell: Frequency distribution", Adv. Concr. Constr., 14(1), 35-43. https://doi.org/10.12989/acc.2022.14.1.035 
  26. Hussain, M. (2024), Small-scale Computational Vibration of Carbon Nanotubes: Composite Structure, CRC Press. 
  27. Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144 
  28. Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020a), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., 37(2), 137-150. https://doi.org/10.12989/scs.2020.37.2.137 
  29. Khadimallah, M.A., Hussain, M. and Harbaoui, I. (2020b), "Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control", Adv. Concr. Constr., 10(6), 499-507. https://doi.org/10.12989/acc.2020.10.6.499 
  30. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9 
  31. Kong, W., Fu, T. and Rabczuk, T. (2024), "Improvement of broadband low-frequency sound absorption and energy absorbing of arched curve Helmholtz resonator with negative Poisson's ratio", Appl. Acoust., 221, 110011. https://doi.org/10.1016/j.apacoust.2024.110011 
  32. Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: buckling and post-buckling behavior", Smart Struct. Syst., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155 
  33. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concr., 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501 
  34. Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S 
  35. Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525. 
  36. Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X 
  37. Li, M., Wang, T., Chu, F., Han, Q., Qin, Z. and Zuo, M.J. (2021), "Scaling-basis chirplet transform", IEEE T Ind. Electron., 68(9), 8777-8788. https://doi.org/10.1109/TIE.2020.3013537 
  38. Li, H., Lu, H. and Li, Q. (2024), "Numerical investigations of the influences of valve spool structure on the eccentric jet flow characteristic in high-pressure angle valves", Energy, 298, 131378. https://doi.org/10.1016/j.energy.2024.131378 
  39. Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Marine Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.10319 
  40. Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concr., 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677 
  41. Love, A.E.H. (1888), "The small free vibrations and deformation of thin elastic shell", Phil. Trans. R. Soc. London, A179, 491-549. https://doi.org/10.1098/rsta.1888.0016. 
  42. Loy, C.T., Lam, K.Y. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4, 193-198. https://doi.org/10.3233/SAV-1997-4305 
  43. Miaofen, L., Youmin, L., Tianyang, W., Fulei, C. and Zhike, P. (2023), "Adaptive synchronous demodulation transform with application to analyzing multicomponent signals for machinery fault diagnostics", Mech. Syst. Signal Proc., 191, 110208. https://doi.org/10.1016/j.ymssp.2023.110208 
  44. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concr., 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185 
  45. Muzamal, H. (2022), "Structural stability of laminated composite material for the effectiveness of half axial wave mode: frequency impact", Adv. Concr. Constr., 14(5), 309-315. https://doi.org/10.12989/acc.2022.14.5.309 
  46. Naeem, M.N. and Sharma, C.B. (2000), "Prediction of natural frequencies for thin circular cylindrical shells", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214(10), 1313-1328. https://doi.org/10.1243/0954406001523290 
  47. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. http/10.1007/s00707-006-0438-0 
  48. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5 
  49. Penzes, R.L.E. and Kraus H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA Journal, 10, 1309. https://doi.org/10.2514/3.6605 
  50. Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027 
  51. Qazaq, A., Hussain, M., Mujalli, M. and Tounsi, A. (2022), "Fundamental computer assessment of ring support with exponent of trigonometric function: Safety geometrical perfection", Adv. Concr. Constr., 14(6), 381. https://doi.org/10.12989/acc.2022.14.6.381 
  52. Qin, C., Shi, G., Tao, J., Yu, H., Jin, Y., Xiao, D. and Liu, C. (2024a), "RCLSTMNet: A residual-convolutional-LSTM neural network for forecasting cutterhead torque in shield machine", Int. J. Control Auto Syst., 22(2), 705-721. https://doi.org/10.1007/s12555-022-0104-x 
  53. Qin, C., Huang, G., Yu, H., Zhang, Z., Tao, J. and Liu, C. (2024b), "Adaptive VMD and multi-stage stabilized transformer-based long-distance forecasting for multiple shield machine tunneling parameters", Automat. Constr., 165, 105563. https://doi.org/10.1016/j.autcon.2024.105563 
  54. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265 
  55. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8 
  56. Sayin, E. and Calayir, Y. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concr., 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017 
  57. Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", National Aeronautic and Space Administration, for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Va, U.S.A.
  58. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337 
  59. Sharma, P., Singh, R. and Hussain, H. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234. 
  60. Shi, J., Zhao, B., He, J. and Lu, X. (2024), "The optimization design for the journal-thrust couple bearing surface texture based on particle swarm algorithm", Tribol. Int., 198, 109874. https://doi.org/10.1016/j.triboint.2024.109874 
  61. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202 (1994). https://doi.org/10.1115/1.2930412 
  62. Srinivasan, A. V and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Trans. ASME, J. Eng. Ind., 93, 1229-1232. https://doi.org/10.1115/1.3428067 
  63. Sun, R., Wang, S., Li, M. and Zhu, Y. (2025), "An algorithm for large-span flexible bridge pose estimation and multi-keypoint vibration displacement measurement", Measurement, 240, 115582. https://doi.org/10.1016/j.measurement.2024.115582 
  64. Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites", Part 2: Therm. Mech. Behav. Int. Mater., 42, 85-116. https://doi.org/10.1179/imr.1997.42.3.85 
  65. Swaddiwudhipong. S, Tian. J. and Wang C.M. (1995), "Vibration of cylindrical shells with ring supports", J Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503 
  66. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527 
  67. Toulokian Y.S. (1967), Thermo Physical Properties of High Temperature Solid Materials, Macmillan, New York, U.S.A.
  68. Wang, T., Liang, M., Li, J. and Cheng, W. (2014), "Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis", Mech. Syst. Signal Pr., 45(1), 139-153. https://doi.org/10.1016/j.ymssp.2013.11.011 
  69. Wang, S., He, J., Fan, J., Sun, P. and Wang, D. (2023), "A time-domain method for free vibration responses of an equivalent viscous damped system based on a complex damping model", J. Low Freq. Noise Vib. Active Control, 42(3), 1531-1540. https://doi.org/10.1177/14613484231157514 
  70. Xiang, (2012), "Natural frequencies of rotating functionally graded cylindrical shells", Appl. Math. Mech. Engl. Ed., 33(3), 345-356. https://doi.org/10.1007/s10483-012-1554-6 
  71. Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233 
  72. Yuan, X., Wang, W., Pang, H. and Zhang, L. (2024), "Analysis of vibration characteristics of electro-hydraulic driven 3-UPS/S parallel stabilization platform", Chinese J. Mech. Eng., 37(1), 96. https://doi.org/10.1186/s10033-024-01074-w 
  73. Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391 
  74. Zhang, S., Liu, L., Zhang, X., Zhou, Y. and Yang, Q. (2024), "Active vibration control for ship pipeline system based on PI-LQR state feedback", Ocean Eng., 310, 118559. https://doi.org/10.1016/j.oceaneng.2024.118559 
  75. Zhang, Z. and Ma, X. (2024), "Friction-induced nonlinear dynamics in a spline-rotor system: Numerical and experimental studies", Int. J. Mech. Sci., 278, 109427. https://doi.org/10.1016/j.ijmecsci.2024.109427 
  76. Zheng, Y., Chu, L., Dui, G. and Zhu, X. (2021), "Modeling and simulation of functionally graded flexoelectric micro-cylinders based on the mixed finite element method", Appl. Phys. A, 127, 1-16. https://doi.org/10.1007/s00339-021-04316-z 
  77. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.