Acknowledgement
The special thanks to HEC of Pakistan.
References
- Agiza, H.N., Elabbasy, E.M., El-Metwally, H. and Elsadany, A.A. (2009), "Chaotic dynamics of a discrete prey-predator model with Holling type II", Nonlinear Anal. Real World Appl., 10, 116-129. https://doi.org/10.1016/j.nonrwa.2007.08.029
- Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157
- Al-Basyouni, K.S. and Khan, A.Q. (2020), "Discrete-time predator-prey model with bifurcations and chaos'", Math. Probl. Eng., 2020, 1-14. https://doi.org/10.1155/2020/8845926
- Alqhtani, M., Owolabi, K.M., Saad, K.M. and Pindza, E. (2023), "Spatiotemporal chaos in spatially extended fractional dynamical systems", Commun. Nonlinear Sci. Numer. Simul., 119, 107118. https://doi.org/10.1016/j.cnsns.2023.107118
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443
- Chakraborty, P., Ghosh, U. and Sarkar, S. (2020), "Stability and bifurcation analysis of a discrete prey-predator model with square-root functional response and optimal harvesting", J. Biol. Syst., 28, 91-110. https://doi.org/10.1142/S0218339020500047
- Ebrahimi, F., Barati, M.R. and Mahesh, V. (2019), "Dynamic modeling of smart magneto-electro-elastic curved nanobeams", Adv. Nano Res., 7(3), 145-155. http://doi.org/10.12989/anr.2019.7.3.145
- Ebrahimi, F., Kokaba, M., Shaghaghi, G. and Selvamani, R. (2020), "Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions", Adv. Nano Res., 8(2), 169-182. https://doi.org/10.12989/anr.2020.8.2.169
- Edelstein-Keshet, L. (2005), Mathematical Models in Biology. Society for Industrial and Applied Mathematics, SIAM Publications, Pennsylvania, U.S.A.
- Elaydi, S.N. (1996), An Introduction to Difference Equations, Springer-Verlag, New York, U.S.A.
- Gonpot, P., Collet, J.S.A.J. and Sookia, N.U. (2008), "Gierer-Meinhardt model: bifurcation analysis and pattern formation", Trends Appl. Sci. Res., 3, 115-128. https://doi.org/10.3923/tasr.2008.115.128
- Gu, L., Gong, P. and Wang, H. (2020), "Hopf bifurcation and turing instability analysis for the Gierer-Meinhardt model of the depletion type", Discr. Dyn. Nat. Soc., 2020, 5293748. https://doi.org/10.1155/2020/5293748
- Guckenheimer, J. and Holmes, P. (1983), Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer-Verlag, New York, U.S.A.
- Khan, A.Q. and Alayachi, H.S. (2022), "Bifurcation and chaos in a phytoplankton-zooplankton model with holling type-II response and toxicity", Int. J. Bifurcat. Chaos, 32, 2250176. https://doi.org/10.1142/S0218127422501760
- Khan, A., Ma, J. and Xiao, D. (2016), "Bifurcations of a two-dimensional discrete time plant-herbivore system", Commun. Nonlinear Sci. Numer. Simul., 39, 185-198. https://doi.org/10.1016/j.cnsns.2016.02.037
- Kuznetsov, Y.A. (2004), Elements of Applied Bifurcation Theory, Springer-Verlag New York, U.S.A.
- Liu, X. and Xiao, D. (2007), "Complex dynamic behaviors of a discrete-time predator-prey system", Chaos Solit. Fract., 32, 80-94. https://doi.org/10.1016/j.chaos.2005.10.081
- Liu, W. and Cai, D. (2019), "Bifurcation, chaos analysis and control in a discrete-time predator-prey system", Adv. Differ. Eq., 2019, 11. https://doi.org/10.1186/s13662-019-1950-6
- Lynch, S. (2007), Dynamical Systems with Applications Using Mathematica, Mass, Boston, U.S.A. https://doi.org/10.1007/978-0-8176-4586-1
- Owolabi, K.M. and Jain, S. (2023), "Spatial patterns through diffusion-driven instability in modified predator-prey models with chaotic behaviors", Chaos Solit. Fract., 174, 113839. https://doi.org/10.1016/j.chaos.2023.113839
- Owolabi, K.M. and Pindza, E. (2022a), "Mathematical analysis and numerical simulation of time-fractional host-parasitoid system with Caputo operator", J. Appl. Comput. Mech., 21(1), 79-90. https://doi.org/10.17512/jamcm.2022.1.07
- Owolabi, K.M. and Pindza, E. (2022b), "Numerical simulation of chaotic maps with the new generalized Caputo-type fractional-order operator", Results Phys., 38, 105563. https://doi.org/10.1016/j.rinp.2022.105563
- Owolabi, K.M., Agarwal, R.P., Pindza, E., Bernstein, S. and Osman, M.S. (2023), "Complex Turing patterns in chaotic dynamics of autocatalytic reactions with the Caputo fractional derivative", Neural Comput. Appl., 35(15), 11309-11335. https://doi.org/10.1007/s00521-023-08298-2
- Owolabi, K.M., Pindza, E., Karaagac, B. and Oguz, G. (2024), "Laplace transform-homotopy perturbation method for fractional time diffusive predator-prey models in ecology", Part. Differ. Eq. Appl. Math., 9, 100607. https://doi.org/10.1016/j.padiff.2023.100607
- Prytula, Z. (2015), "Mathematical modelling of nonlinear dynamics in activator-inhibitor systems with superdiffusion", Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the National Academy of Sciences of Ukraine, 826, 230-237.
- Rana, S.M.S. (2017), "Chaotic dynamics and control of discrete ratio-dependent predator-prey system", Discr. Dyn. Nat. Soc., 2017, 1-13. https://doi.org/10.1155/2017/4537450
- Sun, A., Wu, R. and Chen, M. (2021), "Turing-Hopf bifurcation analysis in a diffusive Gierer-Meinhardt model", AIMS Math., 6, 1920-1942. https://doi.org/10.3934/math.2021117
- Tunc, C. (2010), "A note on boundedness of solutions to a class of non-autonomous differential equations of second order", Appl. Anal. Discrete Math., 4, 361-372. https://doi.org/10.2298/AADM100601026T
- Tunc, C. and Tunc, E. (2007), "On the asymptotic behavior of solutions of certain second-order differential equations", J. Frankl. Inst., 344, 391-398. https://doi.org/10.1016/j.jfranklin.2006.02.011
- Tunc, C. and Tunc, O. (2016a), "A note on the stability and boundedness of solutions to non-linear differential systems of second order", J. Assoc. Arab Univ. Basic Appl. Sci., 24, 169-175. https://doi.org/10.1016/j.jaubas.2016.12.004
- Tunc, C. and Tunc, O. (2016b), "On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order", J. Adv. Res., 7, 165-168. https://doi.org/10.1016/j.jare.2015.04.005
- Wang, J., Li, Y. and Hou, X. (2018), "Supercritical Hopf bifurcation and Turing patterns for an activator and inhibitor model with different sources", Adv. Differ. Eq., 2018, 1-23. https://doi.org/10.1186/s13662-018-1697-5
- Yochelis, A. (2021), "The nonlinear initiation of side-branching by activator-inhibitor-substrate (Turing) morphogenesis", Chaos, 31, 051102. https://doi.org/10.1063/5.0050630
- Zhu, M. (2018), "Activator-Inhibitor model for seashell pattern formation", Semantic Scholar, Corpus ID 231685255. https://api.semanticscholar.org/CorpusID:231685255