DOI QR코드

DOI QR Code

Dynamic characteristics of a discrete-time activator-inhibitor system

  • Abdul Qadeer Khan (Department of Mathematics, University of Azad Jammu and Kashmir)
  • Received : 2021.09.12
  • Accepted : 2024.09.18
  • Published : 2024.11.25

Abstract

Enzymes are specialized proteins that act as biological catalysts, accelerating chemical reactions essential for the functioning of all living cells. They play a critical role in metabolism, and their activity is regulated by molecules known as activators, which enhance their function, and inhibitors, which reduce it. These regulatory mechanisms ensure that metabolic processes occur efficiently and at the right time. Systems biology applies mathematical modeling to study and simulate these complex biological networks, allowing researchers to better understand and predict the outcomes of various metabolic reactions, providing valuable insights into cellular behavior. So, this work investigates the dynamical properties of a discrete activator-inhibitor system. It proves the existence of an interior equilibrium solution and analyzes its local dynamics. The study explores possible bifurcations, showing that the system undergoes Neimark-Sacker and flip bifurcations. Chaos in the system is also examined. Finally, simulations are provided to validate the theoretical findings.

Keywords

Acknowledgement

The special thanks to HEC of Pakistan.

References

  1. Agiza, H.N., Elabbasy, E.M., El-Metwally, H. and Elsadany, A.A. (2009), "Chaotic dynamics of a discrete prey-predator model with Holling type II", Nonlinear Anal. Real World Appl., 10, 116-129. https://doi.org/10.1016/j.nonrwa.2007.08.029
  2. Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157
  3. Al-Basyouni, K.S. and Khan, A.Q. (2020), "Discrete-time predator-prey model with bifurcations and chaos'", Math. Probl. Eng., 2020, 1-14. https://doi.org/10.1155/2020/8845926
  4. Alqhtani, M., Owolabi, K.M., Saad, K.M. and Pindza, E. (2023), "Spatiotemporal chaos in spatially extended fractional dynamical systems", Commun. Nonlinear Sci. Numer. Simul., 119, 107118. https://doi.org/10.1016/j.cnsns.2023.107118
  5. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443
  6. Chakraborty, P., Ghosh, U. and Sarkar, S. (2020), "Stability and bifurcation analysis of a discrete prey-predator model with square-root functional response and optimal harvesting", J. Biol. Syst., 28, 91-110. https://doi.org/10.1142/S0218339020500047
  7. Ebrahimi, F., Barati, M.R. and Mahesh, V. (2019), "Dynamic modeling of smart magneto-electro-elastic curved nanobeams", Adv. Nano Res., 7(3), 145-155. http://doi.org/10.12989/anr.2019.7.3.145
  8. Ebrahimi, F., Kokaba, M., Shaghaghi, G. and Selvamani, R. (2020), "Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions", Adv. Nano Res., 8(2), 169-182. https://doi.org/10.12989/anr.2020.8.2.169
  9. Edelstein-Keshet, L. (2005), Mathematical Models in Biology. Society for Industrial and Applied Mathematics, SIAM Publications, Pennsylvania, U.S.A.
  10. Elaydi, S.N. (1996), An Introduction to Difference Equations, Springer-Verlag, New York, U.S.A.
  11. Gonpot, P., Collet, J.S.A.J. and Sookia, N.U. (2008), "Gierer-Meinhardt model: bifurcation analysis and pattern formation", Trends Appl. Sci. Res., 3, 115-128. https://doi.org/10.3923/tasr.2008.115.128
  12. Gu, L., Gong, P. and Wang, H. (2020), "Hopf bifurcation and turing instability analysis for the Gierer-Meinhardt model of the depletion type", Discr. Dyn. Nat. Soc., 2020, 5293748. https://doi.org/10.1155/2020/5293748
  13. Guckenheimer, J. and Holmes, P. (1983), Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer-Verlag, New York, U.S.A.
  14. Khan, A.Q. and Alayachi, H.S. (2022), "Bifurcation and chaos in a phytoplankton-zooplankton model with holling type-II response and toxicity", Int. J. Bifurcat. Chaos, 32, 2250176. https://doi.org/10.1142/S0218127422501760
  15. Khan, A., Ma, J. and Xiao, D. (2016), "Bifurcations of a two-dimensional discrete time plant-herbivore system", Commun. Nonlinear Sci. Numer. Simul., 39, 185-198. https://doi.org/10.1016/j.cnsns.2016.02.037
  16. Kuznetsov, Y.A. (2004), Elements of Applied Bifurcation Theory, Springer-Verlag New York, U.S.A.
  17. Liu, X. and Xiao, D. (2007), "Complex dynamic behaviors of a discrete-time predator-prey system", Chaos Solit. Fract., 32, 80-94. https://doi.org/10.1016/j.chaos.2005.10.081
  18. Liu, W. and Cai, D. (2019), "Bifurcation, chaos analysis and control in a discrete-time predator-prey system", Adv. Differ. Eq., 2019, 11. https://doi.org/10.1186/s13662-019-1950-6
  19. Lynch, S. (2007), Dynamical Systems with Applications Using Mathematica, Mass, Boston, U.S.A. https://doi.org/10.1007/978-0-8176-4586-1
  20. Owolabi, K.M. and Jain, S. (2023), "Spatial patterns through diffusion-driven instability in modified predator-prey models with chaotic behaviors", Chaos Solit. Fract., 174, 113839. https://doi.org/10.1016/j.chaos.2023.113839
  21. Owolabi, K.M. and Pindza, E. (2022a), "Mathematical analysis and numerical simulation of time-fractional host-parasitoid system with Caputo operator", J. Appl. Comput. Mech., 21(1), 79-90. https://doi.org/10.17512/jamcm.2022.1.07
  22. Owolabi, K.M. and Pindza, E. (2022b), "Numerical simulation of chaotic maps with the new generalized Caputo-type fractional-order operator", Results Phys., 38, 105563. https://doi.org/10.1016/j.rinp.2022.105563
  23. Owolabi, K.M., Agarwal, R.P., Pindza, E., Bernstein, S. and Osman, M.S. (2023), "Complex Turing patterns in chaotic dynamics of autocatalytic reactions with the Caputo fractional derivative", Neural Comput. Appl., 35(15), 11309-11335. https://doi.org/10.1007/s00521-023-08298-2
  24. Owolabi, K.M., Pindza, E., Karaagac, B. and Oguz, G. (2024), "Laplace transform-homotopy perturbation method for fractional time diffusive predator-prey models in ecology", Part. Differ. Eq. Appl. Math., 9, 100607. https://doi.org/10.1016/j.padiff.2023.100607
  25. Prytula, Z. (2015), "Mathematical modelling of nonlinear dynamics in activator-inhibitor systems with superdiffusion", Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the National Academy of Sciences of Ukraine, 826, 230-237.
  26. Rana, S.M.S. (2017), "Chaotic dynamics and control of discrete ratio-dependent predator-prey system", Discr. Dyn. Nat. Soc., 2017, 1-13. https://doi.org/10.1155/2017/4537450
  27. Sun, A., Wu, R. and Chen, M. (2021), "Turing-Hopf bifurcation analysis in a diffusive Gierer-Meinhardt model", AIMS Math., 6, 1920-1942. https://doi.org/10.3934/math.2021117
  28. Tunc, C. (2010), "A note on boundedness of solutions to a class of non-autonomous differential equations of second order", Appl. Anal. Discrete Math., 4, 361-372. https://doi.org/10.2298/AADM100601026T
  29. Tunc, C. and Tunc, E. (2007), "On the asymptotic behavior of solutions of certain second-order differential equations", J. Frankl. Inst., 344, 391-398. https://doi.org/10.1016/j.jfranklin.2006.02.011
  30. Tunc, C. and Tunc, O. (2016a), "A note on the stability and boundedness of solutions to non-linear differential systems of second order", J. Assoc. Arab Univ. Basic Appl. Sci., 24, 169-175. https://doi.org/10.1016/j.jaubas.2016.12.004
  31. Tunc, C. and Tunc, O. (2016b), "On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order", J. Adv. Res., 7, 165-168. https://doi.org/10.1016/j.jare.2015.04.005
  32. Wang, J., Li, Y. and Hou, X. (2018), "Supercritical Hopf bifurcation and Turing patterns for an activator and inhibitor model with different sources", Adv. Differ. Eq., 2018, 1-23. https://doi.org/10.1186/s13662-018-1697-5
  33. Yochelis, A. (2021), "The nonlinear initiation of side-branching by activator-inhibitor-substrate (Turing) morphogenesis", Chaos, 31, 051102. https://doi.org/10.1063/5.0050630
  34. Zhu, M. (2018), "Activator-Inhibitor model for seashell pattern formation", Semantic Scholar, Corpus ID 231685255. https://api.semanticscholar.org/CorpusID:231685255