Acknowledgement
The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/95/45.
References
- Akbas, S.D. (2017), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1
- Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 21. https://doi.org/10.12989/anr.2018.6.3.219
- Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/JCAMECH.2019.281285.392
- Albert, O.T. (1994), "Biology and ecology of Norway pout (Trisopterus esmarki Nilsson, 1855) in the Norwegian Deep", ICES J. Marine Sci., 51(1), 45-61. https://doi.org/10.1006/jmsc.1994.1005.
- AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., 25(1), 111. https://doi.org/10.12989/sss.2020.25.1.111.
- Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., 18(4), 787-800. http://doi.org/10.12989/sss.2016.18.4.787
- Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct Syst, 19(1), 33-38. https://doi.org/10.12989/sss.2017.19.1.033
- Arshad, R., Jalil, M., Hussain, M. and Tounsi, A. (2024), "A novel framework for the construction of cryptographically secure S-boxes", Comput. Concr., 34(1), 79-91. https://doi.org/10.12989/cac.2024.34.1.079.
- Asghar, S., Naeem, M.N. and Hussain, M. (2020), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E, 116, 113726. https://doi.org/10.1016/j.physe.2019.113726
- Banoqitah, E.M., Hussain, M., Khadimallah, M.A., Ghandourah, E., Yahya, A., Basha, M. and Alshoaibi, A. (2022), "A simplified directly determination of natural frequencies of CNT: Via aspect ratio", Adv. Nano Res., 13(3), 207. https://doi.org/10.12989/anr.2022.13.3.207
- Barany, M., Barron, J.T., Gu, L. and Barany, K. (2001), "Exchange of the actin-bound nucleotide in intact arterial smooth muscle", J. Biol. Chem., 276(51), 48398-48403. https://doi.org/10.1074/jbc.M106227200
- Bennett, V. and Baines, A.J. (2001). "Spectrin and ankyrin-based pathways: metazoan inventions forintegrating cells into tissues," Physiol. Rev., 81(3), 1353-1392. https://doi.org/10.1152/physrev.2001.81.3.1353
- Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)," Comput. Concr., 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.6.1053
- Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197
- Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., Mahadevan, L., Parker, K.K., Ingber, D.E. and Weitz, D.A. (2006), "Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement", J. Cell Biol., 173(5), 733-741. https://doi.org/10.1083/jcb.200601060
- Cammarata, R. (1997), "Surface and interface stress effects on interfacial and nanostructured materials," Mater. Sci. Eng. A, 237(2), 180-184. https://doi.org/10.1016/S0921-5093(97)00128-7
- Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nature Rev. Mole. Cell Biol., 5(8), 601-613. https://doi.org/10.1038/nrm1438.
- Chang, T.,and Hou, J. (2006), "Molecular dynamics simulations on buckling of multiwalled carbon nanotubes under bending", J. Appl. Phys., 100(11), 114327. https://doi.org/10.1063/1.2400096
- Chen, C., Yin, L., Song, X., Yang, H., Ren, X., Gong, X., Wang, F. and Yang, L. (2016), "Effects of vimentin disruption on the mechanoresponses of articular chondrocyte", Biochem. Biophys. Res. Commun., 469(1), 132-137. https://doi.org/10.3390/cells7100147
- Chen, T., Chiu, M.S. and Weng, C.N. (2006), "Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids", J. Appl. Phys., 100(7), 074308. https://doi.org/10.1063/1.2356094
- Civalek, O ., Demir, C . and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15(2), 289-298. https://doi.org/10.3390/mca15020289.
- Ece, M. and Aydogdu, M. (2007), "Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes", Acta Mechanica, 190(1-4), 185-195. https://doi.org/10.1007/s00707-006-0417-5
- Elbaum, M., Fygenson, D.K. and Libchaber, A. (1996), "Buckling microtubules in vesicles", Phys. Rev. Lett., 76(21), 4078. https://doi.org/10.1103/PhysRevLett.76.4078.
- Elzinga, M., Collins, J.H., Kuehl, W.M. and Adelstein, R.S. (1973), "Complete amino-acid sequence of actin of rabbit skeletal muscle", Proceedings of the National Academy of Sciences, 70(9), 2687-2691. https://doi.org/10.1073/pnas.70.9
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. http://doi.org/10.1016/0020-7225(72)90039-0
- Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203
- Felgner, H., Frank, R. and Schliwa, M. (1996), "Flexural rigidity of microtubules measured with the use of optical tweezers", J. Cell Sci., 109(2), 509-516. https://doi.org/10.1529/biophysj.104.055483
- Fu, Y. and Zhang, J. (2010), "Modeling and analysis of micro-tubules based on a modified couple stress theory", Physica E, 42(5), 1741-1745. https://doi.org/10.1016/j.physe.2010.01.033.
- Gao, Y., Wang, J. and Gao, H. (2010), "Persistence length of microtubules based on a continuum anisotropic shell model", J. Comput. Theor. Nanosci., 7(7), 1227-1237. https://doi.org/10.1166/jctn.2010.1476.
- Gao, Y. and Lei, F.M. (2009), "Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory", Biochem. Biophys. Res. Commun., 387(3), 467-471. https://doi.org/10.1016/j.bbrc.2009.07.042
- Gardel, M.L., Shin, J.H., MacKintosh, F.C., Mahadevan, L., Matsudaira, P. and Weitz, D.A. (2004), "Elastic behavior of cross-linked and bundled actin networks", Science, 304(5675), 1301-1305. https://doi.org/10.1126/science.1095087
- Gasser, T.C. (2007), "Validation of 3D crack propagation in plain concrete. Part II: Computational modeling and predictions of the PCT3D test", Comput. Concr., 4(1), 67-82. https://doi.org/10.1007/s40430-018-1315-1
- Ghoshdastider, U., Jiang, S., Popp, D. and Robinson, R.C. (2015), "In search of the primordial actin filament", Proceedings of the National Academy of Sciences, 112(30), 9150-9151. https://doi.org/10.1073/pnas.1511568112
- Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concr., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431
- Grishchuk, E.L., Molodtsov, M.I., Ataullakhanov, F.I. and McIntosh, J.R. (2005), "Force production by disassembling microtubules", Nature, 438(7066), 384-388. https://doi.org/10.1021/bi00480a014.
- Gu, B., Mai, Y.W. and Ru, C.Q. (2009), "Mechanics of micro-tubules modeled as orthotropic elastic shells with transverse shearing", Acta Mechanica, 207(3-4), 195-209. https://doi.org/10.1007/s00707-008-0121-8.
- Gunning, P.W., Ghoshdastider, U., Whitaker, S., Popp, D. and Robinson, R.C. (2015),"The evolution of compositionally and functionally distinct actin filaments", J. Cell Sci., 128(11), 2009-2019. https://doi.org/10.1242/jcs.165563
- Gurtin, M.E., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 78(5), 1093-1109. https://doi.org/10.1080/01418619808239977
- Halliburton, W. (1887), "On muscle-plasma", J. Phys., 8(3-4), 133. https://doi.org/10.1113/jphysiol.1887.sp000252
- Hess, H., Howard, J. and Vogel, V. (2002), "A piconewton forcemeter assembled from microtubules and kinesins", Nano Lett., 2(10), 1113-1115. https://doi.org/10.1021/nl025724i
- Holmes, K.C., Pop, D., Gebhard, W. and Kabsch, W. (1990), "The most detailed model of the actin filament available at present", Nature, 347, 44-49. https://doi.org/10.1038/347044a0.
- Huang, H., Xue, C., Zhang, W. and Guo, M. (2022), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, 113479. https://doi.org/10.1016/j.engstruct.2021.113479
- Hussain, M. (2022), "Controlling of ring based structure of rotating FG shell: Frequency distribution", Adv. Concr. Constr., 14(1), 35-43. https://doi.org/10.12989/acc.2022.14.1.035
- Hussain, M. (2024), Small-scale Computational Vibration of Carbon Nanotubes: Composite Structure, CRC Press.
- Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nano-tubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144
- Hussain, M., Naeem, M.N., Asghar, S. and Tounsi, A. (2020a), "Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes", Adv. Nano Res., 8(4), 307-322. https://doi.org/10.12989/anr.2020.8.4.307
- Hussain, M., Naeem, M. N., Khan, M. S. and Tounsi, A. (2020b), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concr., 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411
- Ishida, T., Thitamadee, S. and Hashimoto, T. (2007), "Twisted growth and organization of cortical microtubules," J. Plant Res., 120(1), 61-70. https://doi.org/10.1007/s10265-006-0039-y
- Janosi, L., Mori, H., Sekine, Y., Abragan, J., Janosi, R., Hirokawa, G. and Kaji, A. (2000), "Mutations influencing the frr gene coding for ribosome recycling factor (RRF)", J. Mol. Biol., 295(4), 815-829. https://doi.org/10.1006/jmbi.1999.3401.
- Jiang, H. and Zhang, J. (2008), "Mechanics of microtubule buckling supported by cytoplasm", J. Appl. Mech., 75(6), 061019. https://doi.org/10.1115/1.2966216
- Jiang, S., Narita, A., Popp, D., Ghoshdastider, U., Lee, L.J., Srinivasan, R., Balasubramanian, M.K., Oda, T., Koh, K. and Larsson, M. (2016), "Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation", Proceedings of the National Academy of Sciences, 113(9), E1200-E1205. https://doi.org/10.1073/pnas.1600129113.
- Jordan, M.A. and Wilson, L. (2004), "Microtubules as a target for anticancer drugs", Nature Rev. Cancer, 4(4), 253. https://doi.org/10.1038/nrc1317
- Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020a), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., 37(2), 137-150. https://doi.org/10.12989/scs.2020.37.2.137
- Khadimallah, M.A., Hussain, M. and Harbaoui, I. (2020b), "Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control", Adv. Concr. Constr., 10(6), 499-507. https://doi.org/10.12989/acc.2020.10.6.499
- Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: buckling and post-buckling behavior", Smart Struct. Syst., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155
- Kurachi, M., Hoshi, M. and Tashiro, H. (1995), "Buckling of a single microtubule by optical trapping forces: Direct measurement of microtubule rigidity", Cell Motil. Cytoskel., 30(3), 221-228. https://doi.org/10.1002/cm.970300306
- Landau, L. and Lifshitz, E.M. (1986), "Theoretical Physics", Hydrodyn. Nauka Moscow, 6. https://doi.org/10.1134/S0021364009010044.
- Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525.
- Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003
- Meftah, S.A., Tounsi, A. and Adda Bedia, E.A. (2006), "Dynamic behaviour of stiffened and damaged coupled shear walls", Comput. Concr., 3(5), 1-15. https://doi.org/10.12989/cac.2006.3.5.285
- Mirny, L. and Shakhnovich, E. (2001), "Protein folding theory: from lattice to all-atom models", Ann Rev. Biophys. Biomol. Struct., 30(1), 361-396. https://doi.org/10.1146/annurev.biophys.30.1.361
- Mofrad, M.R. and Kamm, R.D. (2006), Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics, Cambridge University Press, Cambridge, U.K. https://doi.org/10.1017/CBO9780511607318
- Murmu, T. and Pradhan, S. (2009), "Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory", J. Appl. Phys., 105(6), 064319. https://doi.org/10.1063/1.3091292
- Muzamal, H. (2022), "Structural stability of laminated composite material for the effectiveness of half axial wave mode: frequency impact", Adv. Concr. Constr., 14(5), 309-315. https://doi.org/10.12989/acc.2022.14.5.309
- Narita, A., Takeda, S., Yamashita, A. and Maeda, Y. (2006), "Structural basis of actin filament capping at the barbed-end: A cryo-electron microscopy study", The EMBO J, 25(23), 5626-5633. https://doi.org/10.1038/sj.emboj.7601395
- Needleman, D.J., Ojeda-Lopez, M.A., Raviv, U., Ewert, K., Jones, J.B., Miller, H.P., Wilson, L. and Safinya, C.R. (2004), "Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions", Phys. Rev. Lett., 93(19), 198104. https://doi.org/10.1103/PhysRevLett.93.198104
- Nitta, T. and Hess, H. (2005), "Dispersion in active transport by kinesin-powered molecular shuttles", Nano Lett., 5(7), 1337-1342. https://doi.org/10.1021/nl050586t
- Nogales, E. (2001), "Structural insights into microtubule function", Ann Rev. Biophys. Biomol. Struct., 30(1), 397-420. https://doi.org/10.1146/annurev.biophys.30.1.397.
- Nogales, E., Wolf, S.G. and Downing, K.H. (1998), "Correction: Structure of the αβ tubulin dimer by electron crystallography", Nature, 393(6681), 191. https://doi.org/10.1038/34465
- Oriol, C., Dubord, C. and Landon, F. (1977), "Crystallization of native striated-muscle actin", FEBS Lett., 73(1), 89-91. https://doi.org/10.1016/0014-5793(77)80022-7.
- Otterbein, L.R., Graceffa, P. and Dominguez, R. (2001), "The crystal structure of uncomplexed actin in the ADP state", Science, 293(5530), 708-711. https://doi.org/10.1126/science.1059700
- Park, H.S., Klein, P.A. and Wagner, G.J. (2006), "A surface Cauchy-Born model for nanoscale materials", Int. J. Numer. Meth. Eng., 68(10), 1072-1095. https://doi.org/10.1002/nme.1754
- Pokorny, J. (2003), "Viscous effects on polar vibrations in microtubules", Electromagn. Biol. Med., 22(1), 15-29. https://doi.org/10.1081/JBC-120020349
- Pokorny, J. (2004), "Excitation of vibrations in microtubules in living cells", Bioelectrochemistry, 63(1-2), 321-326. https://doi.org/10.1016/j.bioelechem.2003.09.028
- Pollard, T.D. and J.A. Cooper (2009), "Actin, a central player in cell shape and movement", Science, 326(5957), 1208-1212. https://doi.org/10.1126/science.1175862
- Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027
- Qazaq, A., Hussain, M., Mujalli, M. and Tounsi, A. (2022), "Fundamental computer assessment of ring support with exponent of trigonometric function: Safety geometrical perfection", Adv. Concr. Constr., 14(6), 381. https://doi.org/10.12989/acc.2022.14.6.381
- Qian, X.S., Zhang, J.Q. and Ru, C.Q. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.2717573
- Radi, Z.A. and Khan, N.K. (2006), "Comparative expression and distribution of c-fos, estrogen receptorα (ERα), and p38α in the uterus of rats, monkeys, and humans", Toxicol. Pathol., 34(4), 327-335. https://doi.org/10.3390/ani10020334
- Reddy, J. and Pang, S. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
- Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol., 28, 3459-3469. https://doi.org/10.1007/s12206-014-0807-x
- Shen, H.S. (2010a), "Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model", J. Theor. Biol., 264(2), 386-394. https://doi.org/10.1016/j.jtbi.2010.02.014
- Shen, H.S. (2010b), "Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium", Biomech. Model. Mechanobiol., 9(3), 345-357. https://doi.org/10.1007/s10237-009-0180-3.
- Sirenko, Y.M., Stroscio, M.A. and Kim, K. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003
- Straub, F. and Feuer, G. (1950), "Adenosinetriphosphate the functional group of actin," Biochimica et Biophysica Acta, 4, 455-470. https://doi.org/10.1021/ja01188a515
- Su, Y., Iyela, P.M., Zhu, J., Chao, X., Kang, S. and Long, X. (2024), "A Voronoi-based gaussian smoothing algorithm for efficiently generating RVEs of multi-phase composites with graded aggregates and random pores", Mater. Des., 244, 113159. https://doi.org/10.1016/j.matdes.2024.113159
- Taj, M. and Zhang. J. (2012), "Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model", Biochem. Biophys. Res. Commun., 424(1), 89-93. https://doi.org/10.1016/j.bbrc.2012.06.072
- Taj, M. and Zhang, J.Q. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x.
- Timoshenko, S.P. and Gere, J.M. (2009), Theory of Elastic Stability, Courier Corporation, MA, U.S.A.
- Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
- Tsiatas, G.C., Tsiptsis, I.N. and Siokas, A.G. (2020), "Nonlinear buckling and post-buckling of shape memory alloy shallow arches", J. Appl. Comput. Mech., 6(3), 665-683. https://doi.org/10.22055/JACM.2019.31795.1918
- Tsuda, Y., Yasutake, H., Ishijima, A. and Yanagida, T. (1996), "Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation", Proceedings of the National Academy of Sciences, 93(23), 12937-12942. https://doi.org/10.1073/pnas.93.23
- Vale, R.D. (2003), "The molecular motor toolbox for intracellular transport", Cell, 112(4), 467-480. https://doi.org/10.1016/S0092-8674(03)00111-9.
- Vaziri, A., Lee, H. and Mofrad, M.K. (2006), "Deformation of the cell nucleus under indentation: mechanics and mechanisms," J. Mater. Res., 21(8), 2126-2135. https://doi.org/10.1557/JMR.2006.0262.
- Vindin, H. and P. Gunning (2013), "Cytoskeletal tropomyosins: choreographers of actin filament functional diversity", J. Muscle Res. Cell Motil., 34(3-4), 261-274. http://doi.org/10.1007/ 978-0-387-84847-1_10
- Wang, C.Y., Ru, C.Q. and Mioduchowski, A. (2006), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74(5), 052901. https://doi.org/10.1103/PhysRevE.74.052901
- Wang, C., Li, C. and Adhikari, S. (2009), "Dynamic behaviors of microtubules in cytosol", J. Biomech., 42(9), 1270-1274. https://doi.org/10.1016/j.jbiomech.2009.03.027.
- Wang, C., Ru, C. and Mioduchowski, A. (2006), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74(5), 052901. https://doi.org/10.1103/PhysRevE.74.052901.
- Wang, G.F. and Feng, X.Q. (2007), "Effects of surface elasticity and residual surface tension on the natural frequency of microbeams", Appl. Phys. Lett., 90(23), 231904. https://doi.org/10.1063/1.2746950
- Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913. https://doi.org/10.1063/1.3117505
- Wang, H., Hou, Y., He, Y., Wen, C., Giron-Palomares, B., Duan, Y., Gao, B., Vavilov, V.P. and Wang, Y. (2024), "A physical-constrained decomposition method of infrared thermography: Pseudo restored heat flux approach based on ensemble bayesian variance tensor fraction", IEEE T. Ind. Inform., 20(3), 3413-3424. https://doi.org/10.1109/TII.2023.3293863
- Wang, J., Fu, A., Liu, B., Chen, Y., Cao, Y., Zhou, H., Wang, B., Li, X., Li, J., Fang, Q. and Liu, Y. (2024), "Weakening the mechanical property anisotropy of additively manufactured medium entropy alloy by controlling the cellular structure", Add. Manuf., 89, 104303. https://doi.org/10.1016/j.addma.2024.10430
- Wang, Q. and Liew, K. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
- Wang, Y. and J. Qian (2019), "Buckling of filamentous actin bundles in filopodial protrusions", Acta Mechanica Sinica, 35(2), 365-375. https://doi.org/10.1007/s10409-019-00838-1
- Wang, Z., Yuan, Y., Zhang, S., Lin, Y. and Tan, J. (2024), "A multi-state fusion informer integrating transfer learning for metal tube bending early wrinkling prediction", Appl. Soft Comput., 151, 110991. https://doi.org/10.1016/j.asoc.2023.110991
- Woody, R., Roberts, G., Clark, D. and Bayley, P. (1982), "1H NMR evidence for flexibility in microtubule-associated proteins and microtubule protein oligomers", FEBS Lett., 141(2), 181-184. https://doi.org/10.1111/j.1432-1033.1977.tb11726.x
- Wu, Q., Chen, N., Yao, M., Niu, Y. and Wang, C. (2024), "Nonlinear dynamic analysis of FG fluid conveying micropipes with initial imperfections", Int. J. Struct. Stabil. Dyn., 2550017. https://doi.org/10.1142/S0219455425500178
- Xu, S., Jing, X., Zhu, P., Jin, H., Paik, K., He, P. and Zhang, S. (2023), "Equilibrium phase diagram design and structural optimization of SAC/Sn-Pb composite structure solder joint for preferable stress distribution", Mater. Character., 206, 113389. https://doi.org/10.1016/j.matchar.2023.113389
- Yaman, I.O., Akbay, Z. and Aktan, H. (2006), "Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete", Comput. Concr., 3(6), 423-437. https://doi.org/10.12989/cac.2006.3.6.423
- Yang, C., Li, Z., Xu, P. and Huang, H. (2024), "Recognition and optimisation method of impact deformation patterns based on point cloud and deep clustering: Applied to thin-walled tubes", J. Ind. Inform. Integr., 40, 100607. https://doi.org/10.1016/j.jii.2024.100607
- Yao, R., Ge, Z., Wang, D., Shang, N. and Shi, J. (2024), "Self-sensing joints for in-situ structural health monitoring of composite pipes: A piezoresistive behavior-based method", Eng. Struct., 308, 118049. https://doi.org/10.1016/j.engstruct.2024.118049
- Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233
- Yi, L., Chang, T. and Ru, C. (2008), "Buckling of microtubules under bending and torsion", Journal of Applied Physics, 103(10), 103516. https://doi.org/10.1063/1.2930882.
- Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391
- Zamani, A., Kolahchi, R.,and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concr., 20(6), 671-68. https://doi.org/10.12989/cac.2017.20.6.671
- Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Clean. Prod., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390
- Zhang, H., Liu, H. and Kuai, H. (2024a), "Stress intensity factor analysis for multiple cracks in orthotropic steel decks rib-to-floorbeam weld details under vehicles loading", Eng. Fail. Anal., 164, 108705. https://doi.org/10.1016/j.engfailanal.2024.108705
- Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023), "Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate", J. Build. Eng., 71, 106522. https://doi.org/10.1016/j.jobe.2023.106522
- Zhang, W., Lin, J., Huang, Y., Lin, B. and Kang, S. (2024b), "Temperature-dependent debonding behavior of adhesively bonded CFRP-UHPC interface", Compos. Struct., 340, 118200. https://doi.org/10.1016/j.compstruct.2024.118200
- Zhang, Y., Huang, Z., Wang, H. and Li, J. (2023), "Regulation of the interface compatibility of the 3D-printing interpenetration networks toward reduced structure anisotropy and enhanced performances", ACS Appl. Mater. Interf., 15(27), 32984-32992. https://doi.org/10.1021/acsami.3c06514
- Zhao, Y., Liu, K., Hou, H. and Chen, L. (2022), "Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study", Mater. Des., 216, 110555. https://doi.org/10.1016/j.matdes.2022.110555