DOI QR코드

DOI QR Code

Influence of hygrothermal aging on the mechanical strength of an Aluminum/Aluminum bonded assembly

  • 투고 : 2024.02.02
  • 심사 : 2024.11.04
  • 발행 : 2024.12.25

초록

The adhesive bonding technique has become widely prevalent in recent years, especially in fields such as engineering, aerospace, and sports. During operational service, adhesives are subjected to severe environmental conditions, including temperature variations, humidity, and UV radiation, which can impact their performance. In this study, we utilized the mechanical properties of the aged epoxy adhesive Adekit A140 in a finite element model to assess the impact of temperature and water absorption on the degradation of mechanical properties in metal-metal adhesive joints used in aeronautical structures. Our primary objective was to analyze, using the finite element method, the influence of these environmental factors on the joint's strength by evaluating the distribution of Von Mises stresses. The adhesive's mechanical properties, such as Young's modulus (E), were measured at different immersion periods and then integrated into the numerical modeling. The results revealed that water absorption leads to a significant degradation of the adhesive's mechanical properties, primarily manifested as a reduction in Young's modulus. Despite this degradation, an increase in plasticity was observed, which surprisingly improved the overall strength of the bonded assembly under certain conditions. Notably, after 90 days of immersion, the joint's strength demonstrated a 15% reduction in stiffness but exhibited enhanced durability due to plastic deformation, indicating a potential tradeoff between stiffness and durability in long-term service. This provides valuable insight into the design of adhesive joints under varying environmental conditions.

키워드

참고문헌

  1. Djafar, A.K., El Sallah, Z.M., Abdelmadjid, M. and Abderahmane, S. (2023), "The behavior of adhesive joints affected by the geometry and stacking sequence of composite materials", Struct. Eng. Mech., 88(6), 609- 623. https://doi.org/10.12989/sem.2023.88.6.609
  2. Abdelmadjid, M., El Sallah, Z.M., Yaylaci, M., Djafar, A.K., Ali, B., Abdelghani, B. and Yaylaci, E.U. (2024), "Effects of the stiffness of an inclusion on the mechanical behavior of an aluminum alloy plate with a lateral notch", Steel Compos. Struct., 51(1), 63-72. https://doi.org/10.12989/scs.2024.51.1.063
  3. Bandaru, A.K., Hickey, S., Singh, D., Gujjala, R. and Pichandi, S. (2023), "Influence of hygrothermal ageing on the novel infusible thermoplastic resin reinforced with quadriaxial non-crimp glass fabrics", J. Thermoplast. Compos. Mater., 36(10), 3813-3836. https://doi.org/10.1177/08927057221137
  4. Bazli, M., Heitzmann, M. and Hernandez, B.V. (2021), "Hybrid fibre reinforced polymer and seawater sea sand concrete structures: A systematic review on short-term and long-term structural performance", Constr. Build. Mater., 301, 124335. https://doi.org/10.1016/j.conbuildmat.2021.124335
  5. Bazli, M., Jafari, A., Ashrafi, H., Zhao, X.L., Bai, Y. and Raman, R.S. (2020), "Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles", Constr. Build. Mater., 231, 117137. https://doi.org/10.1016/j.conbuildmat.2019.117137
  6. Boulenouar, A., Bouchelarm, M.A. and Benseddiq, N. (2023), "Finite element analysis of corner cracked aluminum panels repaired with bonded composite patch", Steel Compos. Struct., 49(3), 271-280. https://doi.org/10.12989/scs.2023.49.3.271. https://doi.org/10.12989/scs.2023.49.3.271.
  7. Costa, M., Viana, G., Da Silva, L.F.M. and Campilho, R.D.S.G. (2017), "Environmental effect on the fatigue degradation of adhesive joints:areview", J. Adhes., 93(1-2), 127-146. https://doi.org/10.1080/00218464.2016.1179117.
  8. El Sallah, Z.M., Abdelmadjid, M., Abderahmane, S., Abdelghani, B. and Ali, B. (2023), "Study of the fracture behavior of different structures by the extended finite element method (X-FEM)", Adv. Mater. Res., 12(4), 273-286. https://doi.org/10.12989/amr.2023.12.4.273
  9. Fang, H., Bai, Y., Liu, W., Qi, Y. and Wang, J. (2019), "Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments", Compos. Part B Eng., 164, 129-143. https://doi.org/10.1016/j.compositesb.2018.11.047
  10. Garg, M., Sharma, S., Sharma, S. and Mehta, R. (2017), "Effect of hygrothermal aging on GFRP composites in marine environment", Steel Compos. Struct., 25(1), 93-104. https://doi.org/10.12989/scs.2017.25.1.093.
  11. Heshmati, M., Haghani, R. and Al-Emrani, M. (2017), "Durability of bonded FRP-to-steel joints: Effects of moisture, de-icing salt solution, temperature and FRP type", Compos. Part B Eng., 119, 153-167. https://doi.org/10.1016/j.compositesb.2017.03.049
  12. Huang, S., Yan, L., Kasal, B. and Wei, Y. (2023), "Moisture diffusion and tensile properties of epoxy-based and polyurethane- basedflax-glass hybrid FRP under hygrothermal and weathering environments", Compos. Part B Eng., 267, 111049. https://doi.org/10.1016/j.compositesb.2023.111049.
  13. Ke, L., Li, C., He, J., Dong, S., Chen, C. and Jiao, Y. (2020), "Effects of elevated temperatures on mechanical behavior of epoxy adhesives and CFRP-steel hybrid joints", Compos. Struct., 235, 111789. https://doi.org/10.1016/j.compstruct.2019.111789
  14. Li, J., Mai, Z., Xie, J. and Lu, Z. (2022), "Durability of components of FRP-concrete bonded reinforcement systems exposed to chloride environments", Compos. Struct., 279, 114697. https://doi.org/10.1016/j.compstruct.2021.114697.
  15. Li, J., Xie, J., Liu, F. and Lu, Z. (2019), "A critical review and assessment for FRP-concrete bond systems with epoxy resin exposed to chloride environments", Compos. Struct., 229, 111372. https://doi.org/10.1016/j.compstruct.2019.111372
  16. Medjdoub, S.M., Madani, K., Rezgani, L., Mallarino, S., Touzain, S. and Campilho, R.D.S.G. (2022), "Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum", Struct. Eng. Mech., 83(5), 693-707. http://hdl.handle.net/10400.22/21903. 10400.22/21903
  17. Moulgada, A., Zagane, M.E.S., Abderrahmane, S. and Zahi, R. (2021), "Study of mechanical behavior by fatigue of a cracked plate repaired by different composite patches", Frattura ed Integrita Strutturale, 15(56), 195-202. https://doi.org/10.3221/IGF-ESIS.56.16.
  18. Mu, W., Chen, X., Li, S. and Na, J. (2024), "Machine learning-based assessment of hygrothermal aging performance in CFRP aluminum alloy adhesive bonded structures", J. Adhes., 100(11), 1040-1065. https://doi.org/10.1080/002 18464.2023.2284963.
  19. Mubashar, A., Ashcroft, I.A., Critchlow, G.W. and Crocombe, A.D. (2009), "Moisture absorption-desorption effects in adhesive joints", Int J Adhes Adhes, 29, 751-760. https://doi.org/10.1016/j.ijadhadh.2009.05.001
  20. Nguyen, T.C., Bai, Y., Zhao, X.L. and Al-Mahaidi, R. (2012), "Durability of steel/CFRP double strap joints exposed to sea water, cyclic temperature and humidity", Compos. Struct., 94(5), 1834-1845. https://doi.org/10.1016/j.compstruct.2012.01.004
  21. Pitta, S., Rojas, J., Roure, F., Crespo, D. and Abdel Wahab, M. (2022), "An experimental and numerical investigation on fatigue of composite and metal aircraft structures", Steel Compos. Struct., 43(1), 19-30. https://doi.org/10.12989/scs.2022.43.1.019.
  22. Sharifianjazi, F., Zeydi, P., Bazli, M., Esmaeilkhanian, A., Rahmani, R., Bazli, L. and Khaksar, S. (2022), "Fibre-reinforced polymer reinforced concrete members under elevated temperatures: A review on structural performance", Polymers, 14(3), 472. https://doi.org/10.3390/polym14030472
  23. Tafsirojjaman, T., Dogar, A.U.R., Liu, Y., Manalo, A. and Thambiratnam, D.P. (2022), "Performance and design of steel structures reinforced with FRP composites: A state-of-the-art review", Eng. Fail. Anal., 138, 106371. https://doi.org/10.1016/j.engfailanal.2022.106371
  24. Wang, P., Wu, H.L. and Leung, C.K. (2022), "Hygrothermal aging effect on the water diffusion in glass fiberreinforced polymer (GFRP) composite: Experimental study and numerical simulation", Compos. Sci. Technol., 230, 109762. https://doi.org/10.1016/j.compscitech.2022.109762.
  25. Xie, G.H., Tao, Z.A., Sun, Y., Li, S.Q. andGedi, A.A. (2022), "An investigation of hygrothermal effect on fatigue behavior of adhesively bonded anchorages for FRP tendon", Constr. Build. Mater., 316, 126044. https://doi.org/10.1016/j.conbuildmat.2021.126044.
  26. Yang, S., Yu, Y., Xu, Y., Jian, F., Song, W., Yisimayi, A., ... and Cao, Y. (2024), "Fast evolution of SARSCoV-2 BA. 2.86 to JN.1 under heavy immune pressure", Lancet Infect. Disease., 24(2), e70e72. https://doi.org/10.1016/S1473 3099(23)00744-2.
  27. Zahi, R., Sahli, A., Kaci, D., Bourada, F., Tounsi, A. and Ghazwani, M.H. (2023), "Study and analysis of a tapered shaft in composite materials with variable speed of rotation" Struct. Eng. Mech., 87(2), 191- 200. https://doi.org/10.12989/sem.2023.87.2.191.