DOI QR코드

DOI QR Code

Investigation on polyvinyl butyral interlayered and ultrasonic vibration-assisted friction stir welded AA7075-T651 joints

  • Vaibhav S. Gaikwad (Department of Mechanical Engineering, Vishwakarma Institute of Information Technology) ;
  • Satish Chinchanikar (Department of Mechanical Engineering, Vishwakarma Institute of Technology)
  • Received : 2022.11.30
  • Accepted : 2024.10.21
  • Published : 2024.12.25

Abstract

In this study, the performance of polyvinyl butyral interlayered friction stir welded (PVBFSWed) and ultrasonic vibration-assisted friction stir welded (UVaFSWed) AA7075-T651 joints are investigated, considering the effect of tool rotation and welding speed. The joints' tensile strength, microhardness, microstructure, and fracture behavior are evaluated. The UVaFSWed joints showed better performance compared to the PVBFSWed joints. The highest tensile strength of 322.8 MPa and microhardness of 157 Hv in weld nugget is observed for the UVaFSWed joint at a tool rotation of 2000 rpm and welding speed of 40 mm/min. However, the lowest surface roughness of 7.98 ㎛ was observed for the UVaFSWed joint at a tool rotation of 1400 rpm and welding speed of 40 mm/min. Comparatively lower tensile strength and microhardness were observed for the PVBFSWed joints compared to UVaFSWed joints. The fracture for the UVaFSWed and PVBFSWed joints mainly occurred in the heat-affected zone during the tensile test. The scanning electron microscopy (SEM) images show the more uniform, equiaxed grain distribution in the UVaFSWed joint.

Keywords

References

  1. Alioua, A., Bouchouicha, B., Zemri, M. and Abdellatif, I.M.A.D. (2017), "Fatigue behavior of mechanical structures welded with different filler metal", Adv. Mater. Res., 6(3), 233. https://doi.org/10.12989/amr.2017.6.3.233.
  2. Arora, A., De, A. and Debroy, T. (2011), "Toward optimum friction stir welding tool shoulder diameter", Scr. Mater., 64(1), 9-12. https://doi.org/10.1016/j.scriptamat.2010.08.052.
  3. Auwal, S.T., Ramesh, S., Tan, C., Zhang, Z., Zhao, X. and Manladan, S.M. (2019), "Recent developments and challenges in welding of magnesium to titanium alloys", Adv. Mater. Res., 8(1), 47-73. https://doi.org/10.12989/amr.2019.8.1.047.
  4. Boucherit, A., Avettand-Fenoel, M.N. and Taillard, R. (2017), "Effect of a Zn interlayer on dissimilar FSSW of Al and Cu", Mater. Des., 124, 87-99. https://doi.org/10.1016/j.matdes.2017.03.063.
  5. Cetkin, E., Celik, Y.H. and Temiz, S. (2019), "Microstructure and mechanical properties of AA7075/AA5182 jointed by FSW", J. Mater. Process. Technol., 268, 107-116. https://doi.org/10.1016/j.jmatprotec.2019.01.005.
  6. Chinchanikar, S. and Gaikwad, V.S. (2021), "State of the art in friction stir welding and ultrasonic vibration-assisted friction stir welding of similar/dissimilar aluminum alloys", J. Comput. Appl. Res. Mech. Eng., 11(1), 67-100. https://doi.org/10.22061/JCARME.2021.7390.1983.
  7. Chowdhury, A., Sengupta, K., Maji, K.K., Roy, S. and Ghosal, S. (2021), "Investigation of mechanical properties of dissimilar joint of Al6063 aluminium alloy and C26000 copper alloy by ultrasonic assisted friction stir welding", Mater. Today Proc., 50, 1527-1534. https://doi.org/10.1016/j.matpr.2021.09.103.
  8. Gaikwad, V.S. and Chinchanikar, S. (2021a), "Mechanical behaviour of friction stir welded AA7075-T651 joints considering the effect of tool geometry and process parameters", Adv. Mater. Proc Technol., 8(4), 3730-3748. https://doi.org/10.1080/2374068X.2021.1976554.
  9. Gaikwad, V.S. and Chinchanikar, S. (2021b), "Investigation on surface roughness, ultimate tensile strength, and microhardness of friction stir welded AA7075-T651 joint", Mater. Today Proc., 46(17), 8061-8065. https://doi.org/10.1016/j.matpr.2021.03.034.
  10. Gaikwad, V.S. and Chinchanikar, S.S. (2022a), "Adaptive neuro fuzzy inference system to predict the mechanical properties of friction stir welded AA7075-T651 joints", Jordan J. Mech. Ind. Eng., 16(3), 381-393.
  11. Gaikwad, V.S. and Chinchanikar, S. (2022b), "Mechanical properties, microstructure, and fracture behavior of friction stir welded AA7075 joints with conical pin and conical threaded pin type tools", Sci. Iranica., 30(1), 1-15. https://doi.org/10.24200/SCI.2022.59154.6087.
  12. Gao, S., Wu, C.S., Padhy, G.K. and Shi, L. (2016), "Evaluation of local strain distribution in ultrasonic enhanced Al 6061-T6 friction stir weld nugget by EBSD analysis", Mater. Des., 99, 135-144. https://doi.org/10.1016/j.matdes.2016.03.055.
  13. Gao, S., Wu, C.S. and Padhy, G.K. (2017), "Material flow, microstructure and mechanical properties of friction stir welded AA 2024-T3 enhanced by ultrasonic vibrations", J. Manuf. Proc., 30, 385-395. https://doi.org/10.1016/j.jmapro.2017.10.008.
  14. Hu, Y., Liu, H. and Du, S. (2021), "Achievement of high-strength 2219 aluminum alloy joint in a broad process window by ultrasonic enhanced friction stir welding", Mater. Sci. Eng. A, 804, 140587. https://doi.org/10.1016/j.msea.2020.140587.
  15. Ji, S., Meng, X., Liu, Z., Huang, R. and Li, Z. (2017), "Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic", Mater. Lett., 201, 173-176. https://doi.org/10.1016/j.matlet.2017.05.011.
  16. Khajeh, R., Jafarian, H.R., Jabraeili, R., Eivani, A.R., Seyedein, S. H., Park, N. and Heidarzadeh, A. (2022), "Strength-ductility synergic enhancement in friction stir welded AA2024 alloy and copper joints: Unravelling the role of Zn interlayer's thickness", J. Mater. Res. Technol., 16, 251-262. https://doi.org/10.1016/j.jmrt.2021.11.133.
  17. Kuang, B., Shen, Y., Chen, W., Yao, X., Xu, H., Gao, J. and Zhang, J. (2015), "The dissimilar friction stir lap welding of 1A99 Al to pure Cu using Zn as filler metal with 'pinless' tool configuration", Mater. Des., 68, 54-62. https://doi.org/10.1016/j.matdes.2014.12.008.
  18. Kumar, S. (2016), "Ultrasonic assisted friction stir processing of 6063 aluminum alloy", Arch. Civ. Mech. Eng., 16(3), 473-484. https://doi.org/10.1016/j.acme.2016.03.002.
  19. Kumar, S., Wu, C.S., Padhy, G.K. and Ding, W. (2017), "Application of ultrasonic vibrations in welding and metal processing: A status review", J. Manuf. Proc, 26, 295-322. https://doi.org/10.1016/j.jmapro.2017.02.027.
  20. Kumar, M., Das, A. and Ballav, R. (2019), "Influence of interlayer on microstructure and mechanical properties of friction stir welded dissimilar joints: A review", Mater. Today Proc., 26, 2123-2129. https://doi.org/10.1016/j.matpr.2020.02.458.
  21. Kumar, S. and Wu, C. (2021), "Eliminating intermetallic compounds via Ni interlayer during friction stir welding of dissimilar Mg/Al alloys", J. Mater. Res. Technol., 15, 4353-4369. https://doi.org/10.1016/j.jmrt.2021.10.065.
  22. Lei, Z., Bi, J., Li, P., Guo, T., Zhao, Y. and Zhang, D. (2018), "Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy", Opt. Laser Technol., 105, 15-22. https://doi.org/10.1016/j.optlastec.2018.02.050.
  23. Lenin, W.A., Periyasamy, N. and George, L. (2016), "Influence of interlayer thickness (Zn) on the Properties of Al 7020 FSW Joints", Mater. Res., 19(4), 817-823. https://doi.org/10.1590/1980-5373-MR-2016-0163.
  24. Liu, X.C. and Wu, C.S. (2013), "Experimental study on ultrasonic vibration enhanced friction stir welding", Proceedings of the 1st International Joint Symposium on Joining and Welding, 151-154, Osaka, Japan, November. https://doi.org/10.1533/978-1-78242-164-1.151.
  25. Liu, X., Wu, C. and Padhy, G.K. (2015), "Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding", Scr. Mater., 102, 95-98. https://doi.org/10.1016/j.scriptamat.2015.02.022. 
  26. Liu, X.C. and Wu, C.S. (2015), "Material flow in ultrasonic vibration enhanced friction stir welding", J. Mater. Sci. Technol., 225, 32-44. https://doi.org/10.1016/j.jmatprotec.2015.05.020.
  27. Liu, X.C. and Wu, C.S. (2016), "Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding", Mater. Des. 2016; 90: 350-358. https://doi.org/10.1016/j.matdes.2015.10.131.
  28. Liu, Z., Meng, X., Ji, S., Li, Z. and Wang, L. (2018), "Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding", J. Manuf. Proc., 31, 552-559. https://doi.org/10.1016/j.jmapro.2017.12.022.
  29. Liu, H., Zuo, Y., Ji, S., Dong, J. and Zhao, H. (2022), "Friction stir solideliquid spot welding of Cu to Al assisted by Zn interlayer", J. Mater. Res. Technol., 18, 85-95. https://doi.org/10.1016/j.jmrt.2022.02.067.
  30. Lv, X.Q., Wu, C.S. and Padhy, G.K. (2017), "Diminishing intermetallic compound layer in ultrasonic vibration enhanced friction stir welding of aluminum alloy to magnesium alloy", Mater. Lett., 203, 81-84. https://doi.org/10.1016/j.matlet.2017.05.090.
  31. Lv, X., Wu, C.S., Yang, C. and Padhy, G.K. (2018), "Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy", J. Mater. Process. Technol., 254, 145-157. https://doi.org/10.1016/j.jmatprotec.2017.11.031.
  32. Meng, X., Jin, Y., Ji, S. and Yan, D. (2018), "Improving friction stir weldability of Al/Mg alloys via ultrasonically diminishing pin adhesion", J. Mater. Sci. Technol., 34(10), 1817-1822. https://doi.org/10.1016/j.jmst.2018.02.022.
  33. Mokabberi, S.R., Movahedi, M. and Kokabi, A.H. (2018), "Effect of interlayers on softening of aluminum friction stir welds", Mater. Sci. Eng. A, 727, 1-10. https://doi.org/10.1016/j.msea.2018.04.093.
  34. Muhammad, N.A. and Wu, C.S. (2019), "Ultrasonic vibration assisted friction stir welding of aluminium alloy and pure copper", J. Manuf. Proc., 39, 114-127. https://doi.org/10.1016/j.jmapro.2019.02.011.
  35. Muhammad, N.A., Wu, C.S. and Su, H. (2021), "Concurrent influences of tool offset and ultrasonic vibration on the joint quality and performance of dissimilar Al/Cu friction stir welds", J. Mater. Res. Technol., 14, 1035-1051. https://doi.org/10.1016/j.jmrt.2021.07.009.
  36. Padhy, G.K., Wu, C.S., Gao, S. and Shi, L. (2016a), "Local microstructure evolution in Al 6061-T6 friction stir weld nugget enhanced by ultrasonic vibration", Mater. Des., 92, 710-723. https://doi.org/10.1016/j.matdes.2015.12.094.
  37. Padhy, G.K., Wu, C.S. and Gao, S. (2016b), "Subgrain formation in ultrasonic enhanced friction stir welding of aluminium alloy", Mater. Lett., 183, 34-39. https://doi.org/10.1016/j.matlet.2016.07.033.
  38. Salman, S.D. (2022), "The influence of kenaf contents and stacking sequence on drop-weight impact properties of hybrid laminated composites reinforced polyvinyl butyral composites", J. Ind. Text., 51(5), 8645S-8667S. https://doi.org/10.1177/1528083720937388
  39. Salman, S.D. (2020), "Effects of jute fibre content on the mechanical and dynamic mechanical properties of the composites in structural applications", Def. Technol., 16(6), 1098-1105. https://doi.org/10.1016/j.dt.2019.11.013
  40. Salman, S.D., Leman, Z., Sultan, M.T.H., Ishak, M.R. and Cardona, F. (2015), "Influence of resin system on the energy absorption capability and morphological properties of plain woven kenaf composites", IOP Conf. Ser. Mater. Sci. Eng., 100(1), 012053. https://doi.org/10.1088/1757-899X/100/1/012053
  41. Sarkari Khorrami, M., Kazeminezhad, M. and Kokabi, A.H. (2014), "The effect of SiC nanoparticles on the friction stir processing of severely deformed aluminum", Mater. Sci. Eng. A., 602, 110-118. https://doi.org/10.1016/j.msea.2014.02.067.
  42. Shakil, M., Tariq, N.H., Ahmad, M., Choudhary, M.A., Akhter, J.I. and Babu, S.S. (2014), "Effect of ultrasonic welding parameters on microstructure and mechanical properties of dissimilar joints", Mater. Des., 55, 263-273. https://doi.org/10.1016/j.matdes.2013.09.074.
  43. Shi, L., Wu, C.S. and Liu, X.C. (2015), "Modeling the effects of ultrasonic vibration on friction stir welding", J. Mater. Process. Technol., 222, 91-102. https://doi.org/10.1016/j.jmatprotec.2015.03.002.
  44. Shi, L., Wu, C.S., Padhy, G.K. and Gao, S. (2016), "Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding", Mater. Des., 104, 102-115. https://doi.org/10.1016/j.matdes.2016.05.001. 
  45. Siddiq, A. and El Sayed, T. (2011), "Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM", Mater. Lett., 65(2), 356-359. https://doi.org/10.1016/j.matlet.2010.10.031.
  46. Su, H., Zhao, Q., Chen, J. and Wu, C. (2022), "Homogenizing the intermetallic compounds distribution in Al/Cu dissimilar friction stir welding joint with the assistance of ultrasonic vibration", Mater. Today Commun., 31, 103643. https://doi.org/10.1016/j.mtcomm.2022.103643.
  47. Thoma, M., Wagner, G., Strass, B., Wolter, B., Benfer, S. and Furbeth, W. (2018), "Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-Joints," J. Mater. Sci. Technol., 34(1), 163-172. https://doi.org/10.1016/j.jmst.2017.10.022.
  48. Wu, M., Wu, C.S. and Gao, S. (2017), "Effect of ultrasonic vibration on fatigue performance of AA 2024-T3 friction stir weld joints", J. Manuf. Process., 29, 85-95. https://doi.org/10.1016/j.jmapro.2017.07.023.
  49. Wu, C.S., Wang, T. and Su, H. (2022), "Material flow velocity, strain and strain rate in ultrasonic vibration enhanced friction stir welding of dissimilar Al/Mg alloys", J. Manuf. Process., 75, 13-22. https://doi.org/10.1016/j.jmapro.2021.12.055.
  50. Xu, C., Sheng, G., Cao, X. and Yuan, X. (2016), "Evolution of Microstructure, Mechanical Properties and Corrosion Resistance of Ultrasonic Assisted Welded-Brazed Mg/Ti Joint", J. Mater. Sci. Technol., 32(12), 1253-1259. https://doi.org/10.1016/j.jmst.2016.08.029.
  51. Yang, C., Wu, C.S. and Shi, L. (2020), "Effect of ultrasonic vibration on dynamic recrystallization in friction stir welding", J. Manuf. Proc., 56, 87-95. https://doi.org/10.1016/j.jmapro.2020.04.064.
  52. Yao, Z., Kim, G.Y., Faidley, L., Zou, Q., Mei, D. and Chen, Z. (2012), "Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting", J. Mater. Proc. Technol., 212(3), 640-646. https://doi.org/10.1016/j.jmatprotec.2011.10.017.
  53. Zhang, Z., He, C., Li, Y., Yu, L., Zhao, S. and Zhao, X. (2020), "Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints", J. Mater. Sci. Technol., 43, 1-13. https://doi.org/10.1016/j.jmst.2019.12.007.
  54. Zhao, W., Wu, C.S. and Su, H. (2020), "Numerical investigation of heat generation and plastic deformation in ultrasonic assisted friction stir welding", J. Manuf. Proc., 56, 967-980. https://doi.org/10.1016/j.jmapro.2020.05.047.
  55. Zhao, J., Wu, C.S. and Shi, L. (2022), "Effect of ultrasonic field on microstructure evolution in friction stir welding of dissimilar Al/Mg alloys", J. Mater. Res. Technol., 17, 1-21. https://doi.org/10.1016/j.jmrt.2021.12.133.
  56. Zhong, Y.B., Wu, C.S. and Padhy, G.K. (2017), "Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding", J. Mater. Proc. Technol., 239, 273-283. https://doi.org/10.1016/j.jmatprotec.2016.08.025.