참고문헌
- Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concr., 24(6), 489-498. http://doi.org/10.12989/cac.2019.24.6.489.
- Aceti, P., Carminati, L., Bettini, P. and Sala, G. (2023), "Hygrothermal ageing of composite structures. Part 2: Mitigation techniques, detection and removal", Compos. Struct., 319, 117105. https://doi.org/10.1016/j.compstruct.2023.117105.
- Adda-Bedia, E.A., Bouazza, M., Tounsi, A., Benzair, A. and Maachou, M. (2008), "Prediction of stiffness degradation in hygrothermal aged [θm/90n]s composite laminates with transverse cracking", J. Mater. Proc. Technol., 199(1-3), 199-205. https://doi.org/10.1016/j.jmatprotec.2007.08.002.
- Akula, V.M.K. and Garnich, M.R. (2012), "Effective ply and constituent elastic properties for cracked laminates", Compos. Part B Eng., 43(5), 2143-2151. https://doi.org/10.1016/j.compositesb.2012.02.034.
- Benkhedda, A. and Tounsi, A. (2008), "Effect of temperature and humidity on transient hygrothermal stress during moisture desorption in laminated composite plates", Compos. Struct., 82(4), 629-635. https://doi.org/10.1016/j.compstruct.2007.04.013.
- Berthelot, J.M. (1997), "Analysis of the transverse cracking of cross-laminates: a generalized approach", J. Compos. Mater., 31(18), 1780-1805. https://doi.org/10.1177/002199839703101801.
- Boukert, B., Khodjet-Kesba, M., Benkhedda, A. and Bedia, E.A. (2024), "Prediction of stiffness degradation in composite laminate with transverse cracking and delamination under hygrothermal conditions-desorption case", Adv. Aircr. Spacecr. Sci., 11(1), 1-21. https://doi.org/10.12989/aas.2024.11.1.001
- Ghayour, M., Hosseini-Toudeshky, H., Jalalvand, M. and Barbero, E.J. (2016), "Micro/macro approach for prediction of matrix cracking evolution in laminated composites", J. Compos. Mater., 50(19), 2647-2659. https://doi.org/10.1177/0021998315610179.
- Gholami, M., Afrasiab, H., Baghestani, A.M. and Fathi, A. (2022a), "A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials", Compos. Sci. Technol., 217, 109120. https://doi.org/10.1016/j.compscitech.2021.109120.
- Gholami, M., Afrasiab, H., Baghestani, A.M. and Fathi, A. (2022b), "Mechanical and failure analysis of thick composites under hygrothermal conditions by a novel coupled hygro-thermo-mechanical multiscale algorithm", Compos. Sci. Technol., 230(1), 109773. https://doi.org/10.1016/j.compscitech.2022.109773.
- Guo, R., Xian, G., Li, F., Li, C. and Hong, B. (2022), "Hygrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites", Constr. Build. Mater., 315, 125710. https://doi.org/10.1016/j.conbuildmat.2021.125710.
- Hajikazemi, M. and Sadr, M.H. (2014), "Stiffness reduction of cracked general symmetric laminates using a variational approach", Int. J. Solids Struct., 51(7-8), 1483-1493. https://doi.org/10.1016/j.ijsolstr.2013.12.040.
- Hashin, Z. (1985), "Analysis of cracked laminates: a variational approach", Mech. Mater., 4(2), 121-136. https://doi.org/10.1016/0167-6636(85)90011-0.
- Hashin, Z. (1986), "Analysis of stiffness reduction of cracked cross ply laminates", Eng. Fract. Mech., 25(5-6), 771-778. https://doi.org/10.1016/0013-7944(86)90040-8.
- Huang, Z.Q., Yi, S.H., Chen, H.X. and He, X.Q. (2019), "Parameter analysis of damaged region for laminates with matrix defects", J. Sandw. Struct. Mater., 23(2), 580-620. https://doi.org/10.1177/1099636219842290.
- Hussnain, S.M., Shah, S.Z.H., Megat-Yusoff, P.S.M. and Hussain, M.Z. (2023), "Degradation and mechanical performance of fibre-reinforced polymer composites under marine environments: A review of recent advancements", Polym. Degrad. Stabil., 215, 110452. https://doi.org/10.1016/j.polymdegradstab.2023.110452.
- Joffe, R., Krasnikovs, A. and Varna, J. (2001), "COD-based simulation of transverse cracking and stiffness reduction in [S/90n]S laminates", Compos. Sci. Technol., 61(5), 637-656. https://doi.org/10.1016/S0266-3538(00)00172-X.
- Katerelos, D.T.G., Kashtalyan, M., Soutis, C. and Galiotis, C. (2008), "Matrix cracking in polymeric composites laminates: Modelling and experiments", Compos. Sci. Technol., 68(12), 2310-2317. https://doi.org/10.1016/j.compscitech.2007.09.013.
- Katerelos, D.T.G., Krasnikovs, A. and Varna, J. (2015), "Variational models for shear modulus of symmetric and balanced laminates with cracks in 90°-layer", Int. J. Solids Struct., 71, 169-179. https://doi.org/10.1016/j.ijsolstr.2015.06.017.
- Khodjet-Kesba, M., Bedia, E.A., Benkhedda, A. and Boukert, B. (2016), "Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates", Steel Compos. Struct., 21(1), 57-21. http://doi.org/10.12989/scs.2016.21.1.057.
- Khodjet-Kesba, M., Benkhedda, A., Bedia, E.A. and Boukert, B. (2018), "On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions", Struct. Eng. Mech., 67(2), 165-173. https://doi.org/10.12989/sem.2018.67.2.165.
- Khodjet-Kesba, M., Benkhedda, A. and Boukert, B. (2019), "Hygrothermal effect on the moisture absorption in composite laminates with transverse cracks and delamination", Adv. Aircr. Spacecr. Sci., 6(4), 315-331. https://doi.org/10.12989/aas.2019.6.4.315.
- Khodjet-Kesba, M., Noureddine, E. and Benkhedda, A. (2021), "Stress distribution on the cracked sandwich plate with non-linear thermal and moisture concentration", Nano Hybrids Compos., 32(45-62), 2021. https://doi.org/10.4028/www.scientific.net/NHC.32.45.
- Lundmark, P. and Varna, J. (2011), "Stiffness reduction in laminates at high intralaminar crack density: effect of crack interaction", Int. J. Damage Mech., 20(2), 279-297. https://doi.org/10.1177/1056789509351840.
- Mansouri, L., Djebbar, A., Khatir, S. and Wahab, M.A. (2019), "Effect of hygrothermal aging in distilled and saline water on the mechanical behaviour of mixed short fibre/woven composites", Compos. Struct., 207, 816-825. https://doi.org/10.1016/j.compstruct.2018.09.067.
- Okabe, T., Onodera, S., Kumagai, Y. and Nagumo, Y. (2017a), "Prediction for progression of transverse cracking in CFRP cross-ply laminates using Monte Carlo method", Adv. Compos. Mater., 26(5), 477-491. https://doi.org/10.1080/09243046.2017.1325076.
- Okabe, T., Onodera, S., Kumagai, Y. and Nagumo, Y. (2017b), "Continuum damage mechanics modeling of composite laminates including transverse cracks" Int. J. Damage Mech., 27(6), 877-895. https://doi.org/10.1177/1056789517711238.
- Rezoug, T., Benkhedda, A., Khodjet-Kesba, M. and Adda, E.A.B. (2011), "Analysis of the composite patches cracked and aged in hygrothermal conditions", Mech. Ind., 12(5), 395-398. https://doi.org/10.1051/meca/2011134.
- Shen, C.H. and Springer, G.S. (1976), "Moisture absorption and desorption of composite materials", J. Compos. Mater., 10(2), 2-20. https://doi.org/10.1177/002199837601000101.
- Tamrakar, S., Couvreur, R., Mielewski, D., Gillespie Jr, J.W. and Kiziltas, A. (2023), "Effects of recycling and hygrothermal environment on mechanical properties of thermoplastic composites", Polym. Degrad. Stabil., 207, 110233. https://doi.org/10.1016/j.polymdegradstab.2022.110233.
- Tounsi, A., Amara, K.H. and Adda-bedia, E. (2005), "Analysis of transverse cracking and stiffness loss in cross-ply laminates with hygrothermal conditions", Comput. Mater. Sci., 32(2), 167-174. https://doi.org/10.1016/j.commatsci.2004.06.005.
- Tounsi, A., Amara, K.H., Benzair, A. and Megueni, A. (2006), "On the transverse cracking and stiffness degradation of aged angle-ply laminates", Mater. Lett., 60(21-22), 2561-2564. https://doi.org/10.1016/j.matlet.2006.01.037.
- Tounsi, A. and Amara, K.H. (2005), "Stiffness degradation in hygrothermal aged cross-ply laminate with transverse cracks", AIAA, Journl. 43 (8), 1836-1843. https://doi.org/10.2514/1.3925.
- Tsai, S.W. (1987), Composites Design, Think Composites, Dayton, Paris, Tokyo.
- Vingradov, V. and Hashin, Z. (2010), "Variational analysis of cracked angle-ply laminates", Compos. Sci. Technol.,70(4), 638-646. https://doi.org/10.1016/j.compscitech.2009.12.018.
- Wang, G.B., Na, J.X. and Li, X.Y. (2023a), "Effect of hygrothermal aging on the high-temperature interlaminar mechanical properties of CFRP under a complex stress state", J. Adhes., 99, 752-782. https://doi.org/10.1080/00218464.2022.2048823.
- Wang, P., Wu, H.L., Leung, C.K. and Li, W.W (2023b), "Hygrothermal aging effects on the diffusion-degradation process of GFRP composite: Experimental study and numerical simulation", Constr. Build. Mater., 379, 131075. https://doi.org/10.1016/j.conbuildmat.2023.131075.
- Xian, G., Guo, R. and Li, C. (2022a), "Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite", Compos. Struct., 281, 115060. https://doi.org/10.1016/j.compstruct.2021.115060.
- Xian, G., Guo, R., Li, C. and Wang, Y. (2022b), "Mechanical performance evolution and life prediction of prestressed CFRP plate exposed to hygrothermal and freeze-thaw environments", Compos. Struct., 293, 115719. https://doi.org/10.1016/j.compstruct.2022.115719.
- Yas, M.H., Bayat, A., Kamarian, S., Malekshahi, A. and Song, J.I. (2023), "Buckling analysis and design optimization of trapezoidal composite plates under hygrothermal environments", Compos. Struct., 315, 116935. https://doi.org/10.1016/j.compstruct.2023.116935.