DOI QR코드

DOI QR Code

Orientation of fiber effect on stiffness degradation in hygrothermal aged and cracked composite laminates - desorption case

  • Mohamed Khodjet-kesba (Aeronautical Sciences Laboratory, Aeronautics and space studies Institute, University of Blida1) ;
  • B. Boukert (Aeronautical Sciences Laboratory, Aeronautics and space studies Institute, University of Blida1) ;
  • A. Benkhedda (Aeronautical Sciences Laboratory, Aeronautics and space studies Institute, University of Blida1) ;
  • E.A. Adda bedia (Materials and Hydrology Laboratory, University of Sidi Bel Abbes)
  • Accepted : 2024.09.20
  • Published : 2024.12.25

Abstract

A modified Shear-lag model and variational approach were used to predict the effect of the crack density on stiffness degradation for [βmn]s composite laminates under different environmental conditions by the temperature variation and transient moisture concentration distribution in desorption case. Good agreement is obtained between the prediction models and experimental data published by Joffe and Katerelos, one reason for disagreement is damage in 40° layer and interface delamination that are not included in analysis. When the uncracked angle-ply laminate is submitted to hygrothermal conditions, the transient non-uniform moisture concentration distribution gives rise to relative reduction of the longitudinal Young's modulus. The results indicate that plies with a high orientation angle are more significantly affected by hygrothermal conditions, leading to greater degradation of mechanical properties, particularly Young's modulus. Furthermore, for cracked laminate [β/903]s with transverse crack, the total stiffness is significantly reduced as transverse crack density and fiber angle orientation increase in the outer layer, coupled with rising temperature and moisture concentration. However, the relative stiffness for [0/θ3]s cracked laminate, decreases more substantially when the fiber angle orientation is less than 90° in cracked plies with transverse crack and under various environmental conditions. The present study underscores the significance of comprehending the degradation of stiffness in the aged and cracked laminates, particularly with different fiber orientation angle.

Keywords

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concr., 24(6), 489-498. http://doi.org/10.12989/cac.2019.24.6.489.
  2. Aceti, P., Carminati, L., Bettini, P. and Sala, G. (2023), "Hygrothermal ageing of composite structures. Part 2: Mitigation techniques, detection and removal", Compos. Struct., 319, 117105. https://doi.org/10.1016/j.compstruct.2023.117105.
  3. Adda-Bedia, E.A., Bouazza, M., Tounsi, A., Benzair, A. and Maachou, M. (2008), "Prediction of stiffness degradation in hygrothermal aged [θm/90n]s composite laminates with transverse cracking", J. Mater. Proc. Technol., 199(1-3), 199-205. https://doi.org/10.1016/j.jmatprotec.2007.08.002.
  4. Akula, V.M.K. and Garnich, M.R. (2012), "Effective ply and constituent elastic properties for cracked laminates", Compos. Part B Eng., 43(5), 2143-2151. https://doi.org/10.1016/j.compositesb.2012.02.034.
  5. Benkhedda, A. and Tounsi, A. (2008), "Effect of temperature and humidity on transient hygrothermal stress during moisture desorption in laminated composite plates", Compos. Struct., 82(4), 629-635. https://doi.org/10.1016/j.compstruct.2007.04.013.
  6. Berthelot, J.M. (1997), "Analysis of the transverse cracking of cross-laminates: a generalized approach", J. Compos. Mater., 31(18), 1780-1805. https://doi.org/10.1177/002199839703101801.
  7. Boukert, B., Khodjet-Kesba, M., Benkhedda, A. and Bedia, E.A. (2024), "Prediction of stiffness degradation in composite laminate with transverse cracking and delamination under hygrothermal conditions-desorption case", Adv. Aircr. Spacecr. Sci., 11(1), 1-21. https://doi.org/10.12989/aas.2024.11.1.001
  8. Ghayour, M., Hosseini-Toudeshky, H., Jalalvand, M. and Barbero, E.J. (2016), "Micro/macro approach for prediction of matrix cracking evolution in laminated composites", J. Compos. Mater., 50(19), 2647-2659. https://doi.org/10.1177/0021998315610179.
  9. Gholami, M., Afrasiab, H., Baghestani, A.M. and Fathi, A. (2022a), "A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials", Compos. Sci. Technol., 217, 109120. https://doi.org/10.1016/j.compscitech.2021.109120.
  10. Gholami, M., Afrasiab, H., Baghestani, A.M. and Fathi, A. (2022b), "Mechanical and failure analysis of thick composites under hygrothermal conditions by a novel coupled hygro-thermo-mechanical multiscale algorithm", Compos. Sci. Technol., 230(1), 109773. https://doi.org/10.1016/j.compscitech.2022.109773.
  11. Guo, R., Xian, G., Li, F., Li, C. and Hong, B. (2022), "Hygrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites", Constr. Build. Mater., 315, 125710. https://doi.org/10.1016/j.conbuildmat.2021.125710.
  12. Hajikazemi, M. and Sadr, M.H. (2014), "Stiffness reduction of cracked general symmetric laminates using a variational approach", Int. J. Solids Struct., 51(7-8), 1483-1493. https://doi.org/10.1016/j.ijsolstr.2013.12.040.
  13. Hashin, Z. (1985), "Analysis of cracked laminates: a variational approach", Mech. Mater., 4(2), 121-136. https://doi.org/10.1016/0167-6636(85)90011-0.
  14. Hashin, Z. (1986), "Analysis of stiffness reduction of cracked cross ply laminates", Eng. Fract. Mech., 25(5-6), 771-778. https://doi.org/10.1016/0013-7944(86)90040-8.
  15. Huang, Z.Q., Yi, S.H., Chen, H.X. and He, X.Q. (2019), "Parameter analysis of damaged region for laminates with matrix defects", J. Sandw. Struct. Mater., 23(2), 580-620. https://doi.org/10.1177/1099636219842290.
  16. Hussnain, S.M., Shah, S.Z.H., Megat-Yusoff, P.S.M. and Hussain, M.Z. (2023), "Degradation and mechanical performance of fibre-reinforced polymer composites under marine environments: A review of recent advancements", Polym. Degrad. Stabil., 215, 110452. https://doi.org/10.1016/j.polymdegradstab.2023.110452.
  17. Joffe, R., Krasnikovs, A. and Varna, J. (2001), "COD-based simulation of transverse cracking and stiffness reduction in [S/90n]S laminates", Compos. Sci. Technol., 61(5), 637-656. https://doi.org/10.1016/S0266-3538(00)00172-X.
  18. Katerelos, D.T.G., Kashtalyan, M., Soutis, C. and Galiotis, C. (2008), "Matrix cracking in polymeric composites laminates: Modelling and experiments", Compos. Sci. Technol., 68(12), 2310-2317. https://doi.org/10.1016/j.compscitech.2007.09.013.
  19. Katerelos, D.T.G., Krasnikovs, A. and Varna, J. (2015), "Variational models for shear modulus of symmetric and balanced laminates with cracks in 90°-layer", Int. J. Solids Struct., 71, 169-179. https://doi.org/10.1016/j.ijsolstr.2015.06.017.
  20. Khodjet-Kesba, M., Bedia, E.A., Benkhedda, A. and Boukert, B. (2016), "Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates", Steel Compos. Struct., 21(1), 57-21. http://doi.org/10.12989/scs.2016.21.1.057.
  21. Khodjet-Kesba, M., Benkhedda, A., Bedia, E.A. and Boukert, B. (2018), "On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions", Struct. Eng. Mech., 67(2), 165-173. https://doi.org/10.12989/sem.2018.67.2.165.
  22. Khodjet-Kesba, M., Benkhedda, A. and Boukert, B. (2019), "Hygrothermal effect on the moisture absorption in composite laminates with transverse cracks and delamination", Adv. Aircr. Spacecr. Sci., 6(4), 315-331. https://doi.org/10.12989/aas.2019.6.4.315.
  23. Khodjet-Kesba, M., Noureddine, E. and Benkhedda, A. (2021), "Stress distribution on the cracked sandwich plate with non-linear thermal and moisture concentration", Nano Hybrids Compos., 32(45-62), 2021. https://doi.org/10.4028/www.scientific.net/NHC.32.45.
  24. Lundmark, P. and Varna, J. (2011), "Stiffness reduction in laminates at high intralaminar crack density: effect of crack interaction", Int. J. Damage Mech., 20(2), 279-297. https://doi.org/10.1177/1056789509351840.
  25. Mansouri, L., Djebbar, A., Khatir, S. and Wahab, M.A. (2019), "Effect of hygrothermal aging in distilled and saline water on the mechanical behaviour of mixed short fibre/woven composites", Compos. Struct., 207, 816-825. https://doi.org/10.1016/j.compstruct.2018.09.067.
  26. Okabe, T., Onodera, S., Kumagai, Y. and Nagumo, Y. (2017a), "Prediction for progression of transverse cracking in CFRP cross-ply laminates using Monte Carlo method", Adv. Compos. Mater., 26(5), 477-491. https://doi.org/10.1080/09243046.2017.1325076.
  27. Okabe, T., Onodera, S., Kumagai, Y. and Nagumo, Y. (2017b), "Continuum damage mechanics modeling of composite laminates including transverse cracks" Int. J. Damage Mech., 27(6), 877-895. https://doi.org/10.1177/1056789517711238.
  28. Rezoug, T., Benkhedda, A., Khodjet-Kesba, M. and Adda, E.A.B. (2011), "Analysis of the composite patches cracked and aged in hygrothermal conditions", Mech. Ind., 12(5), 395-398. https://doi.org/10.1051/meca/2011134.
  29. Shen, C.H. and Springer, G.S. (1976), "Moisture absorption and desorption of composite materials", J. Compos. Mater., 10(2), 2-20. https://doi.org/10.1177/002199837601000101.
  30. Tamrakar, S., Couvreur, R., Mielewski, D., Gillespie Jr, J.W. and Kiziltas, A. (2023), "Effects of recycling and hygrothermal environment on mechanical properties of thermoplastic composites", Polym. Degrad. Stabil., 207, 110233. https://doi.org/10.1016/j.polymdegradstab.2022.110233. 
  31. Tounsi, A., Amara, K.H. and Adda-bedia, E. (2005), "Analysis of transverse cracking and stiffness loss in cross-ply laminates with hygrothermal conditions", Comput. Mater. Sci., 32(2), 167-174. https://doi.org/10.1016/j.commatsci.2004.06.005.
  32. Tounsi, A., Amara, K.H., Benzair, A. and Megueni, A. (2006), "On the transverse cracking and stiffness degradation of aged angle-ply laminates", Mater. Lett., 60(21-22), 2561-2564. https://doi.org/10.1016/j.matlet.2006.01.037.
  33. Tounsi, A. and Amara, K.H. (2005), "Stiffness degradation in hygrothermal aged cross-ply laminate with transverse cracks", AIAA, Journl. 43 (8), 1836-1843. https://doi.org/10.2514/1.3925.
  34. Tsai, S.W. (1987), Composites Design, Think Composites, Dayton, Paris, Tokyo. 
  35. Vingradov, V. and Hashin, Z. (2010), "Variational analysis of cracked angle-ply laminates", Compos. Sci. Technol.,70(4), 638-646. https://doi.org/10.1016/j.compscitech.2009.12.018.
  36. Wang, G.B., Na, J.X. and Li, X.Y. (2023a), "Effect of hygrothermal aging on the high-temperature interlaminar mechanical properties of CFRP under a complex stress state", J. Adhes., 99, 752-782. https://doi.org/10.1080/00218464.2022.2048823.
  37. Wang, P., Wu, H.L., Leung, C.K. and Li, W.W (2023b), "Hygrothermal aging effects on the diffusion-degradation process of GFRP composite: Experimental study and numerical simulation", Constr. Build. Mater., 379, 131075. https://doi.org/10.1016/j.conbuildmat.2023.131075.
  38. Xian, G., Guo, R. and Li, C. (2022a), "Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite", Compos. Struct., 281, 115060. https://doi.org/10.1016/j.compstruct.2021.115060.
  39. Xian, G., Guo, R., Li, C. and Wang, Y. (2022b), "Mechanical performance evolution and life prediction of prestressed CFRP plate exposed to hygrothermal and freeze-thaw environments", Compos. Struct., 293, 115719. https://doi.org/10.1016/j.compstruct.2022.115719.
  40. Yas, M.H., Bayat, A., Kamarian, S., Malekshahi, A. and Song, J.I. (2023), "Buckling analysis and design optimization of trapezoidal composite plates under hygrothermal environments", Compos. Struct., 315, 116935. https://doi.org/10.1016/j.compstruct.2023.116935.