DOI QR코드

DOI QR Code

Effect of waste glass powder as supplementary cementitious material and quarry waste as sand to make eco-friendly SCM

  • Abdelkarim Korteby (Geomaterial Laboratory, University Hassiba Benbouali of Chlef) ;
  • Karim Ezziane (Geomaterial Laboratory, University Hassiba Benbouali of Chlef) ;
  • Mhamed Adjoudj (Geomaterial Laboratory, University Hassiba Benbouali of Chlef)
  • Received : 2023.08.23
  • Accepted : 2024.09.20
  • Published : 2024.12.25

Abstract

This study aims to investigate the effect of incorporating waste glass powder (WGP) and quarry waste sand (QWS) on the properties of eco-friendly self-compacting mortar (SCM). Ordinary cement was replaced with WGP at rates of 0%, 10%, 20% and 30% by weight and the properties of the QWS-based SCM are compared to those of natural sand (NS)-based SCM. In this study, slump flow, superplasticizer requirement, mechanical strength, rheological parameters and hydration heat were investigated. The results obtained show that the use of WGP with different types of sand mixtures increases the fluidity of the SCM. After curing, SCM with 10% WGP exhibited higher compressive and flexural strengths after 28 days for both type of sand. The best performance was obtained with SCM mixes prepared with QWS sand compared to that of NS sand. Adequate relationships have been established to predict slump flow and mechanical strengths as a function of test parameters with high correlation coefficient and low root mean square error.

Keywords

References

  1. Adjoudj, M., Ezziane, K. and Kadri, E.H. (2018), "Study of the rheological behavior of mortar with silica fume and superplasticizer admixtures according to the water film thickness", KSCE J. Civil Eng., 22(1), 2480-2491. https://doi.org/10.1007/s12205-017-0228-3.
  2. Adjoudj, M., Ezziane, K., Kadri, E.H., Ngo, T.T. and Kaci, A. (2014), "Evaluation of rheological parameters of mortar containing various amounts of mineral addition with polycarboxylate superplasticizer", Constr. Build. Mater.,70(1), 549-559. https://doi.org/10.1016/j.conbuildmat.2014.07.111
  3. Ahmad, J. and Zhou, Z. (2023), "Development of high strength self-compacting concrete with waste glass and waste marble", Constr. Build. Mater., 408(1), 33760. https://doi.org/10.1016/j.conbuildmat.2023.133760.
  4. Aliabdo A., AbdElmoaty A.M. and Aboshama A.Y. (2016), "Utilization of waste glass powder in the production of cement and concrete", Constr. Build. Mater., 124(1) 866-877. https://doi.org/10.1016/j.conbuildmat.2016.08.016
  5. Arjun N., Vennila A. and Sreevidya V. (2017), "Experimental study on self-compacting concrete with foundry sand and glass powder", Int. J. ChemTech Res., 10(14), 390-395.
  6. Aslani F. and Ma G. (2018), "Normal and high-strength lightweight self-compacting concrete incorporating perlite, scoria, and polystyrene aggregates at elevated temperatures", J. Mater. Civ. Eng., 30(12), 04018328. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002538.
  7. ASTM C1074-93 (1993), "Standard Practice for Estimating Concrete Strength by the Maturity Method", ASTM International, West Conshohocken, PA.
  8. ASTM C618 (2012), "Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete", ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0618.
  9. Baron J. and Ollivier J.P. (1996), Les Betons: Bases et Donnees pour leurs Formulation, Edition Eyrolles, France.
  10. Benabed B., Azzouz L., Kadri E.H., Kenai S. and Belaidi A.S.E. (2014), "Effect of fine aggregate replacement with desert dune sand on fresh properties and strength of self-compacting mortars", J. Adh. Sci. Tech., 28(21), 2182-2195. https://doi.org/10.1080/01694243.2014.950625,
  11. Benabed B., Kadri E.H., Azzouz L. and Kenai S. (2012), "Properties of self-compacting mortar made with various types of sand", Cem. Concr. Compos., 34(10), 1167-1173. https://doi.org/10.1016/j.cemconcomp.2012.07.007.
  12. Benabed B., Soualhi H., Belaidi A.S.E., Azzouz L. and Kenai S. (2016), "Effect of limestone powder as a partial replacement of crushed quarry sand on properties of self-compacting repair mortars", J. Build. Mater. Struct., 3(1), 15-30. https://doi.org/10.34118/jbms.v3i1.21
  13. Bounedjema Y., Ezziane K. and Hallal A. (2017), "Variation of mechanical and rheological properties of mortar by replacement of natural sand with crushed sand", J. Adh. Sci. Tech., 31(2), 182-201. https://doi.org/10.1080/01694243.2016.1206331
  14. BS EN 196-1 (2016), "Methods of testing cement: Determination of strength", 1-38.
  15. Cepuritis R., Jacobsen S., Pedersen B. and Mortsell E. (2016), "Crushed sand in concrete-Effect of particle shape in different fractions and filler properties on rheology", Cem. Concr. Compos, 71(1), 26-41. https://doi.org/10.1016/j.cemconcomp.2016.04.004
  16. Chang X., Yang X., Zhou W., Xie G. and Liu S. (2015), "Influence of glass powder on hydration kinetics of composite cementitious materials", Adv. Mater. Sci. Eng., 2015(1), 713415, 1-7. https://doi.org/10.1155/2015/713415
  17. Colgan J. (2009), "The international energy agency: challenges for the 21st century", GPPi Policy Paper Series, N°6, 1-20.
  18. Das K.K., Sharma R., Wu X., Lee J.H. and Jang J.G. (2024), "Effects of carbonation curing on chemical attack in cement paste incorporating liquid-crystal display glass powder as a partial binder replacement", Case Stud. Constr. Mater., 20(1), e03251. https://doi.org/10.1016/j.cscm.2024.e03251
  19. Deepa P., Bindhu K.R., Matos A.M. and Delgado J. (2022), "Eco-friendly concrete with waste glass powder: A sustainable and circular solution", Constr. Build. Mater, 355(1), 129217. https://doi.org/10.1016/j.conbuildmat.2022.129217
  20. Domone P. and Jin J. (1999), "Properties of mortar for self-compacting concrete", Proceedings of the 1stInternational RILEM Symposium on Self-Compacting Concrete, Stockholm, 109-120.
  21. EFNARC (2022), "Specification and Guidelines for Self-Compacting Concrete", 1-32.
  22. EN 196-9 (2010), "Methods of testing cement" - Part 9: Heat of hydration - Semiadiabatic method", 1-11.
  23. EN 1992-1-1 (2004), "Eurocode 2: Design of concrete structure-part 1-1 General rules and rules for building", 1-227.
  24. Estelle P., Lanos C. and Perrot A. (2008), "Processing the Couette viscometry data using a Bingham approximation in shear rate calculation", J. N-New. Fluid Mech., 154(1), 31-38. https://doi.org/10.1016/j.jnnfm.2008.01.006
  25. Gokulnath V., Ramesh B. and Suvesha S. (2020), "Influence on flexural properties of glass powder in self compacting concrete", Mater. Tod. Proc., 22(3), 788-792. https://doi.org/10.1016/j.matpr.2019.10.153
  26. Johansen K. and Busterud L. (2001), "Low grade SCC with secondary natural sand rich in fines", Second International RILEM Symposium on SCC, Tokyo, 303-308.
  27. Kadik A., Cherrak M., Bali A., Boutchicha D. and Hannawi K. (2020), "Effect of glass powder on the behaviour of high performance concrete at elevated temperatures", Adv. Concr. Constr., 10(5), 443-454. https://doi.org/10.12989/acc.2020.10.5.443.
  28. Kothai L. and Malathy R. (2012), "Strength studies on self compacting concrete with manufactured sand as partial replacement of natural sand", Eur. J. Sci. Res., 89(1), 490-496.
  29. Kouassi S.S., Kedi A.A.B., Monique T., Tognonvi R.C.N. and Andji Y.Y.J. (2020), "Physico-chemistry of consolidated material from alkaline activation of waste powder glass", J. Mater. Env. Sci., 11(2), 187-195.
  30. Li B., Ke G. and Zhou M. (2011), "Influence of manufactured sand characteristics on strength and abrasion resistance of pavement cement concrete", Constr. Build. Mater, 25(10), 3849-3853. https://doi.org/10.1016/j.conbuildmat.2011.04.004
  31. Li L., Lu J.X., Zhang B. and Poon C.S. (2020), "Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes", Constr. Build. Mater, 258(1), 120381. https://doi.org/10.1016/j.conbuildmat.2020.120381.
  32. Li T., Nogueira R., de Brito J. and Liu J. (2023), "Influence of fine aggregate's morphology on mortars' rheology", J. Build. Eng., 63(1), 105450. https://doi.org/10.1016/j.jobe.2022.105450
  33. Miyazawa A., Ozawa M. and Morimoto H. (2009), "Experimental study on fine grain sand effect on mortar flow in high--performance concrete", 2nd Int. Symposium on Design, Performance and Use of Self Consolidating Concrete, China, 262-269.
  34. Moumin G., Ryssel M., Zhao L., Markewitz P., Sattler C., Robinius M. and Stolten D. (2020), "CO2 emission reduction in the cement industry by using a solar calciner", Renew. Energy, 145(1), 1578-1596. https://doi.org/10.1016/j.renene.2019.07.045.
  35. Nehdi M., Mindess S. and Aitcin P.C. (1996), "Optimization of high strength limestone filler cement mortars", Cem. Concr. Res., 26(6), 883-893. https://doi.org/10.1016/0008-8846(96)00071-3.
  36. Okamura H. and Ouchi M. (2003), "Self-compacting concrete", J. Adv. Concr. Tec., 1(1), 5-15. https://doi.org/10.3151/jact.1.5
  37. Ouldkhaoua Y., Benabed B., Abousnina R. and Kadri E.H. (2019), "Rheological properties of blended metakaolin self-compacting concrete containing recycled CRT funnel glass aggregate", J. Silic. Base. Compos. Mater, 71(5), 154-161. https://doi.org/10.14382/epitoanyag-jsbcm.2019.27.
  38. Ouldkhaoua Y., Benabed B., Abousnina R., Kadri E.H. and Khatib J. (2020), "Effect of using metakaolin as supplementary cementitious material and recycled CRT funnel glass as fine aggregate on the durability of green self-compacting concrete", Constr. Build. Mater., 235(28), 117802. https://doi.org/10.1016/j.conbuildmat.2019.117802.
  39. Patel D., Tiwari R.P., Shrivastava R. and Yadav R.K. (2019), "Effective utilisation of waste glass powder as the substitution of cement in making paste and mortar", Constr. Build. Mater.,199(28), 406-415. https://doi.org/10.1016/j.conbuildmat.2018.12.017
  40. Qiong L., Hongxia Q., Aoyang L. and Guanjun L. (2022), "Performance of waste glass powder as a pozzolanic material in blended cement mortar", Constr. Build. Mater., 324(1), 126531. https://doi.org/10.1016/j.conbuildmat.2022.126531.
  41. Rahma A., El Naber N. and Ismail S.I. (2017), "Effect of glass powder on the compression strength and the workability of concrete", Cog. Eng., 4(1), 1373415. https://doi.org/10.1080/23311916.2017.1373415
  42. Rajathi A. and Portchejian G. (2014), "Experimental study on self compacting concrete using glass powder", Int. J. Struct. Civ. Eng. Res., 3(3), 73-79.
  43. Rehman S., Iqbal S. and Ali A. (2018), "Combined influence of glass powder and granular steel slag on fresh and mechanical properties of self-compacting concrete", Constr. Build. Mater, 178, 153-160.
  44. Rmili A., Ouezdou M.B., Added M. and Ghorbel E. (2009), "Incorporation of crushed sands and Tunisian Desert Sands in the composition of self compacting concretes part II: SCC fresh and hardened states characteristics", Concr. Struct. Mater., 3(1), 11-14. https://doi.org/10.4334/IJCSM.2009.3.1.011.
  45. Sahraoui M. and Bouziani T. (2019, "Effects of fine aggregates types and contents on rheological and fresh properties of SCC", J. Build. Eng., 26(1), 100890. https://doi.org/10.1016/j.jobe.2019.100890
  46. Salahaddin S.D., Haido J.H. and Wardeh G. (2024), "Rheological and mechanical characteristics of basalt fiber UHPC incorporating waste glass powder in lieu of cement", Ain Sham. Eng. J., 15(1), 102515. https://doi.org/10.1016/j.asej.2023.102515.
  47. Sobolev K., Turker P., Soboleva S. and Iscioglu G. (2007), "Utilization of waste glass in ECD-cement: Strength properties and microstructural observations", Waste Manag., 27(7), 971-976. https://doi.org/10.1016/j.wasman.2006.07.014
  48. Sua-Iam G. and Makul N. (2013), "Utilization of limestone powder to improve the properties of selfcompacting concrete incorporating high volumes of untreated rice husk ash as fine aggregate", Constr. Build. Mater, 38(1), 455-464. https://doi.org/10.1016/j.conbuildmat.2012.08.016.
  49. Topcu I.B. and Ugurlu A. (2003), "Effect of the use of mineral filler on the properties of concrete", Cem. Concr. Res., 33(7), 1071-1075. https://doi.org/10.1016/S0008-8846(03)00015-2.
  50. Tuaum A., Shitote S. and Oyawa W. (2018), "Experimental study of self-compacting mortar incorporating recycled glass aggregate", Build., 8(2), 1-15. https://doi.org/10.3390/buildings8020015.
  51. Vanjare M.B. and Mahure S.H. (2012), "Experimental investigation on self compacting concrete using glass powder", Inter. J. Eng. Res. App., 2(3), 1488-1492.
  52. Wakchaure M., Shaikh A. and Gite B. (2012), "Effect of types of fine aggregate on mechanical properties of cement concrete", Int. J. Mod. Eng. Res., 2(5), 3723-3726.
  53. Westerholm M. and Lagerblad B. (2008), Silfwerbrand J., Forssberg E. (2008), "Influence of fine aggregate characteristics on the rheological properties of mortars", Cem. Concr. Compos., 30(4), 274-282. https://doi.org/10.1016/j.cemconcomp.2007.08.008
  54. Yin W., Li X., Sun T., Chen Y., Xu F., Yan G., Xu M. and Tian K. (2021), "Utilization of waste glass powder as partial replacement of cement for the cementitious grouts with superplasticizer and viscosity modifying agent binary mixtures: Rheological and mechanical performances", Constr. Build. Mater., 286(1), 122953. https://doi.org/10.1016/j.conbuildmat.2021.122953.
  55. Zhou Y., Luo H., Anand K., Singh A. and Xie Y.M. (2024), "Sustainable use of ultrafine recycled glass in additive manufactured (3D printed) reactive powder concrete", Constr. Build. Mater., 419(1), 135556. https://doi.org/10.1016/j.conbuildmat.2024.135556.