과제정보
This work is partially supported by the Innovation-Driven Development Special Fund Project of Guangxi (Grant No. Guike AA23062040), the Key Research and Development Program of Guangxi (Grant No. Guike AB23026106), the National Natural Science Foundation of China (Grant No. 52175095), the Science and Technology Planning Project of Liuzhou (Grant Nos. 2022AAA0102, and 2022AAA0104), and the Young Top-notch Talent Cultivation Program of Hubei Province of China.
참고문헌
- Adhikari, B., Dash, P. and Singh, B.N. (2020), "Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory", Compos. Struct., 251, 112597. https://doi.org/10.1016/j.compstruct.2020.112597.
- Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B Eng., 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035.
- Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., Al- Zahrani, M.M., Sharif, A. and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syst., 28(4), 499-513. https://doi.org/10.12989/sss.2021.28.4.499.
- Al-Osta, M.A. (2022a), "An exponential-trigonometric quasi-3D HSDT for wave propagation in an exponentially graded plate with microstructural defects", Compos. Struct., 297, 115984. https://doi.org/10.1016/j.compstruct.2022.115984.
- Al-Osta, M.A. (2022b), "Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory", Steel Compos. Struct., 43(1), 117-127. https://doi.org/10.12989/scs.2022.43.1.117.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 669-689. https://doi.org/10.12989/sss.2021.27.4.669.
- Barati, M.R. and Zenkour, A.M. (2019a), "Analysis of postbuckling behavior of general higher-order functionally graded nanoplates with geometrical imperfection considering porosity distributions", Mech. Adv. Mater. Struct., 26(12), 1081-1088. https://doi.org/10.1080/15376494.2018.1430280.
- Barati, M.R. and Zenkour, A.M. (2019b), "Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection", Mech. Adv. Mater. Struct., 26(6), 503-511. https://doi.org/10.1080/15376494.2017.1400622.
- Belarbi, M.O., Salami, S.J., Garg, A., Hirane, H., Daikh, A.A. and Houari, M.S.A. (2022), "Finite element bending and buckling analysis of functionally graded carbon nanotubes-reinforced composite beam under arbitrary boundary conditions", Steel Compos. Struct., 44(4), 451-471. https://doi.org/10.12989/scs.2022.44.4.451.
- Belarouci, A. and Fekrar, A. (2021), "A new quasi-3D theory for the study of the bending of thick FGM's plates on elastic foundation", Smart Struct. Syst., 27(5), 847-860. https://doi.org/10.12989/sss.2021.27.5.847.
- Belkhodja, Y., Ouinas, D., Fekirini, H., Vina Olay, J.A., Achour, B., Touahmia, M. and Boukendakdji, M. (2022), "A new hybrid HSDT for bending, free vibration, and buckling analysis of FGM plates (2D & quasi-3D)", Smart Struct. Syst., 29(3), 395- 420. https://doi.org/10.12989/sss.2022.29.3.395.
- Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Al-Zahrani, M.M. and Tounsi, A., "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst., 27(4), 719-728. https://doi.org/10.12989/sss.2021.27.4.719.
- Bouazza, M. and Zenkour, A.M. (2020), "Hygro-thermo- mechanical buckling of laminated beam using hyperbolic refined shear deformation theory", Compos. Struct., 252, 112689. https://doi.org/10.1016/j.compstruct.2020.112689.
- Brischetto, S. (2009), "Classical and mixed advanced models for sandwich plates embedding functionally graded cores", J. Mech. Mater. Struct., 4, 13-33. https://doi.org/10.2140/jomms.2009.4.13.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B Eng., 42, 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
- Civalek, O., Uzun, B. and Yayli, M.O. (2022), "A Fourier sine series solution of static and dynamic response of nano/micro-scaled FG rod under torsional effect", Adv, Nano Res., 12(5), 467-482. https://doi.org/10.12989/anr.2022.12.5.467.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Wahab, M.A. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B Condens., 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Cuong-Le, T., Hoang-Le, M., Ferreira, A.J.M. and Wahab M.A. (2022b), "Small size-effect isogeometric analysis for linear and nonlinear responses of porous metal foam microplate", Compos. Struct., 285, 115189. https://doi.org/10.1016/j.compstruct.2022.115189.
- Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2022c), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38, 449-460. https://doi.org/10.1007/s00366-020-01154-0.
- Daikh, A.A. and Zenkour, A.M. (2019), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Express., 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.
- Di Sciuva, M. and Sorrenti, M. (2021), "Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the Refined Zigzag Theory", J. Sandw. Struct. Mater., 23(3), 760-802. https://doi.org/10.1177/1099636219843970.
- Dorduncu, M. (2020), "Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory", Thin-Walled Struct., 146, 106468. https://doi.org/10.1016/j.tws.2019.106468.
- Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
- Fazzolari, F.A. (2016), "Stability analysis of FGM sandwich plates by using variable-kinematics Ritz models", Mech. Adv. Mater. Struct., 23(9), 1104-1113. https://doi.org/10.1080/15376494.2015.1121559.
- Fazzolari, F.A. and Carrera, E. (2014), "Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions", J. Therm. Stress., 37(12), 1449-1481. https://doi.org/10.1080/01495739.2014.937251.
- Garg, A. and Chalak, H.D. (2019), "A review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin-Walled Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005.
- Garg, A., Chalak, H.D. and Chakrabarti, A. (2020a), "Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects", Mech. Based Des. Struct., 50(10), 1-15. https://doi.org/10.1080/15397734.2020.1814157.
- Garg, A., Chalak, H.D. and Chakrabarti, A. (2020b), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
- Garg, A. and Chalak, H.D. (2021), "Analysis of non-skew and skew laminated composite and sandwich plates under hygro- thermo-mechanical conditions including transverse stress variations", J. Sandw. Struct. Mater., 23(8), 3471-3494. https://doi.org/10.1177/1099636220932782.
- Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021a), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
- Garg, A., Chalak, H.D., Belarbi, M.O., Chakrabarti, A. and Houari, M.S.A. (2021b), "Finite element-based free vibration analysis of power-law, exponential and sigmoidal functionally graded sandwich beams", J. Inst. Eng. C, 102(5), 1167-1201. https://doi.org/10.1007/s40032-021-00740-5.
- Garg, A., Chalak, H.D., Belarbi, M.O. and Zenkour, A.M. (2021c), "Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams", Mech. Adv. Mater. Struct., 29(25), 4523-4545. https://doi.org/10.1080/15376494.2021.1931993.
- Garg, A., Mukhopadhyay, T., Chalak, H.D., Belarbi, M.O., Li, L. and Sahoo R. (2022a), "Multiscale bending and free vibration analyses of functionally graded graphene platelet/ fiber composite beams", Steel Compos. Struct., 44(5), 707-720. https://doi.org/10.12989/scs.2022.44.5.707.
- Garg, A., Belarbi, M.O. Li, L and Tounsi, A. (2022), "Bending analysis of power-law sandwich FGM beams under thermal conditions", Adv. Aircr. Spacecr. Sci., 9(3), 243-261. https://doi.org/10.12989/aas.2022.9.3.243.
- Hadji, L. and Tounsi, A. (2021), "Static deflections and stress distribution of functionally graded sandwich plates with porosity", Smart Struct. Syst., 28(3), 343-354. https://doi.org/10.12989/sss.2021.28.3.343.
- Hosseini, S.A.H., Rahmani, O. and Bayat, S. (2022), "A new solution for dynamic response of FG nonlocal beam under moving harmonic load", Steel Compos. Struct., 43(2), 185-200. https://doi.org/10.12989/scs.2022.43.2.185.
- Iurlaro, L., Gherlone, M. and Di Sciuva, M. (2014), "Bending and free vibration analysis of functionally graded sandwich plates using the Refined Zigzag Theory", J. Sandw. Struct. Mater., 16(6), 669-699. https://doi.org/10.1177/1099636214548618.
- Jalali, S.K., Naei, M.H. and Poorsolhjouy, A. (2010), "Thermal stability analysis of circular functionally graded sandwich plates of variable thickness using pseudo-spectral method", Mater. Des., 31, 4755-4763. https://doi.org/10.1016/j.matdes.2010.05.009.
- Kiani, Y. and Eslami, M.R. (2012), "Thermal buckling and post- buckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation", Arch. Appl. Mech., 82, 891-905. https://doi.org/10.1007/s00419-011-0599-8.
- Kirlangic, O. and Akbas, S.D. (2021), "Dynamic responses of functionally graded and layered composite beams", Smart Struct. Syst., 27(1), 115-122. https://doi.org/10.12989/sss.2021.27.1.115.
- Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477.
- Kurpa, L. V. and Shmatko, T.V. (2020), "Buckling and free vibration analysis of functionally graded sandwich plates and shallow shells by the Ritz method and the R-functions theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(20), 4582-4593. https://doi.org/10.1177/0954406220936304.
- Lim, T.K. and Kim, J.H. (2017), "Thermo-elastic effects on shear correction factors for functionally graded beam", Compos. Part B Eng., 123, 262-270. https://doi.org/10.1016/j.compositesb.2017.05.031.
- Love, A.E.H. (1888), "The small free vibrations and deformation of a thin elastic shell", Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 179, 491-546. https://doi.org/10.1098/rsta.1888.0016.
- Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
- Mashat, D.S. and Zenkour, A.M. (2020), "Modified DPL Green- Naghdi theory for thermoelastic vibration of temperature- dependent nanobeams", Results Phys., 16, 102845. https://doi.org/10.1016/j.rinp.2019.102845.
- Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
- Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N., Soares, C.M.M. and Araujo, A.L. (2017), "Influence of zig-zag and warping effects on buckling of functionally graded sandwich plates according to sinusoidal shear deformation theories", Mech. Adv. Mater. Struct., 24(5), 360-376. https://doi.org/10.1080/15376494.2016.1191095.
- Nguyen, K.D., Cuong-Le T., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A hybrid phase-field isogeometric analysis to crack propagation in porous functionally graded structures", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-021-01518-0.
- Nguyen, V.X., Lieu, Q.X., Le, T.A., Nguyen, T.D., Suzuki. T. and Luong, V.H. (2022), "A novel coupled finite element method for hydroelastic analysis of FG-CNTRC floating plates under moving loads", Steel Compos. Struct., 42(2), 243-256. https://doi.org/10.12989/scs.2022.42.2.243.
- Osofero, A.I., Vo, T.P., Nguyen, T.K. and Lee, J. (2016), "Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories", J. Sandw. Struct. Mater., 18(1), 3-29. https://doi.org/10.1177/1099636215582217.
- Patni, M., Minera, S., Groh, R.M.J., Pirrera, A. and Weaver, P.M. (2018), "Three-dimensional stress analysis for laminated composite and sandwich structures", Compos. Part B Eng., 155, 299-328. https://doi.org/10.1016/j.compositesb.2018.08.127.
- Sahoo, B., Sahoo, B., Sharma, N., Mehar, K. and Panda, S.K. (2020), "Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading", Smart Struct. Syst., 26(5), 641-656. https://doi.org/10.12989/sss.2020.26.5.641.
- Shariyat, M. and Alipour, M.M. (2013), "Semi-analytical consistent zigzag-elasticity formulations with implicit layerwise shear correction factors for dynamic stress analysis of sandwich circular plates with FGM layers", Compos. Part B Eng., 49, 43-64. https://doi.org/10.1016/j.compositesb.2013.01.001.
- Shen, H.S. and Li, S.R. (2008), "Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties", Compos. Part B Eng., 39, 332-344. https://doi.org/10.1016/j.compositesb.2007.01.004.
- Singh, S.J. and Harsha, S.P. (2019), "Exact solution for free vibration and buckling of sandwich S-FGM plates on Pasternak elastic foundation with various boundary conditions", Int. J. Struct. Stab. Dyn., 19(3), 2019. https://doi.org/10.1142/S0219455419500287.
- Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
- Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double- FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
- Soleimani-Javid, Z., Amir, S. and Maraghi, Z.M. (2021), "Vibration analysis of sandwich beam with honeycomb core and piezoelectric facesheets affected by PD controller", Smart Struct. Syst., 28(2), 195-212. https://doi.org/10.12989/sss.2021.28.2.195.
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
- Trinh, L.C., Vo, T.P., Osofero, A.I. and Lee, J. (2016), "Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach", Compos. Struct., 156, 263-275. https://doi.org/10.1016/j.compstruct.2015.11.010.
- Trinh, L.C., Vo, T.P., Thai, H.T., Nguyen, T.K. and Keerthan, P. (2018), "State-space Levy solution for size-dependent static, free vibration and buckling behaviours of functionally graded sandwich plates", Compos. Part B Eng., 149, 144-164. https://doi.org/10.1016/j.compositesb.2018.05.017.
- Wang, Z.X. and Shen, H.S. (2011), "Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations", Compos. Struct., 93, 2521-2532. https://doi.org/10.1016/j.compstruct.2011.04.014.
- Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solids Struct., 42, 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
- Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solids Struct., 42, 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
- Zenkour, A.M. and Aljadani, M.H. (2019), "Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates", Eur. J. Mech. A Solids., 78, 103835. https://doi.org/10.1016/j.euromechsol.2019.103835.
- Zenkour, A.M. and Aljadani, M.H. (2020), "Buckling analysis of actuated functionally graded piezoelectric plates via a quasi-3D refined theory", Mech. Mater., 151, 103632. https://doi.org/10.1016/j.mechmat.2020.103632.
- Zenkour, A.M. and Radwan, A.F. (2020), "Bending and buckling analysis of FGM plates resting on elastic foundations in hygrothermal environment", Arch. Civil Mech. Eng., 20, 112. https://doi.org/10.1007/s43452-020-00116-z.
- Zenkour, A.M. and Radwan, A.F. (2019), "Bending response of FG plates resting on elastic foundations in hygrothermal environment with porosities", Compos. Struct., 213, 133-143. https://doi.org/10.1016/j.compstruct.2019.01.065.
- Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93, 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012.
- Zhang, R. and Cao, Y. (2022), "Computational mathematical modeling of the nonlinear vibration characteristics of AFG truncated conical nano pipe based on the nonlocal strain gradient theory", Steel Compos. Struct., 42(5), 599-615. https://doi.org/10.12989/scs.2022.42.5.599.