Acknowledgement
This work is supported by the National Research Foundation of Korea grants (NRF-2019H1A2A1075974 and RS-2023-00274760 to S.Y, NRF-2020R1A6A3A13077356 and NRF-2022R1A6A3A01087657 to J.O, NRF-2020R1I1A3072234 and NRF-2023R1A2C1003170 to J.L) and Ministry of Science and ICT, Korea (RS-2023-00260267).
References
- Zhang S, Yu X, Zhang Y, Xue X, Yu Q, Zha Z, et al. 2021. Metabolic regulation of telomere silencing by SESAME complex-catalyzed H3T11 phosphorylation. Nat. Commun. 12: 594.
- Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, et al. 2015. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348: 1160-1163.
- Grewal SI, Jia S. 2007. Heterochromatin revisited. Nat. Rev. Genet. 8: 35-46.
- Kwapisz M, Morillon A. 2020. Subtelomeric transcription and its regulation. J. Mol. Biol. 432: 4199-4219.
- Wang JY, Jia ST, Jia ST. 2016. New insights into the regulation of heterochromatin. Trends Genet. 32: 284-294.
- Oki M, Kamakaka RT. 2002. Blockers and barriers to transcription: competing activities? Curr. Opin. Cell. Biol. 14: 299-304.
- Huisinga KL, Brower-Toland B, Elgin SC. 2006. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma. 115: 110-122.
- Kueng S, Oppikofer M, Gasser SM. 2013. SIR proteins and the assembly of silent chromatin in budding yeast. Annu. Rev. Genet. 47: 275-306.
- Oh J, Yeom S, Park J, Lee JS. 2022. The regional sequestration of heterochromatin structural proteins is critical to form and maintain silent chromatin. Epigenet Chromatin 15: 5.
- Gartenberg MR, Smith JS. 2016. The nuts and bolts of transcriptionally silent chromatin in Saccharomyces cerevisiae. Genetics 203: 1563-1599.
- Hoggard TA, Chang FJ, Perry KR, Subramanian S, Kenworthy J, Chueng J, et al. 2018. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins. PLoS Genet. 14: e1007418.
- Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, et al. 2002. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12: 1052-1058.
- Hammond SL, Byrum SD, Namjoshi S, Graves HK, Dennehey BK, Tackett AJ, et al. 2014. Mitotic phosphorylation of histone H3 threonine 80. Cell Cycle 13: 440-452.
- Shanower GA, Muller M, Blanton JL, Honti V, Gyurkovics H, Schedl P. 2005. Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 169: 173-184.
- van Leeuwen F, Gafken PR, Gottschling DE. 2002. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109: 745-756.
- Lacoste N, Utley RT, Hunter JM, Poirier GG, Cote J. 2002. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J. Biol. Chem. 277: 30421-30424.
- Takahashi YH, Schulze JM, Jackson J, Hentrich T, Seidel C, Jaspersen SL, et al. 2011. Dot1 and histone H3K79 methylation in natural telomeric and HM silencing. Mol. Cell 42: 118-126.
- Nasmyth KA, Tatchell K. 1980. The structure of transposable yeast mating type loci. Cell 19: 753-764.
- Strathern JN, Spatola E, McGill C, Hicks JB. 1980. Structure and organization of transposable mating type cassettes in Saccharomyces yeasts. Proc. Natl. Acad. Sci. USA 77: 2839-2843.
- Nakanishi S, Sanderson BW, Delventhal KM, Bradford WD, Staehling-Hampton K, Shilatifard A. 2008. A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat. Struct. Mol. Biol. 15: 881-888.
- Park EC, Szostak JW. 1990. Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. Mol. Cell. Biol. 10: 4932-4934.
- Yeom S, Oh J, Lee EJ, Lee JS. 2018. Positive charge of arginine residues on histone H4 tail is required for maintenance of mating type in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 28: 1573-1579.
- Katan-Khaykovich Y, Struhl K. 2005. Heterochromatin formation involves changes in histone modifications over multiple cell generations. EMBO J. 24: 2138-2149.
- Onishi M, Liou GG, Buchberger JR, Walz T, Moazed D. 2007. Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Mol. Cell. 28: 1015-1028.
- van Welsem T, Frederiks F, Verzijlbergen KF, Faber AW, Nelson ZW, Egan DA, et al. 2008. Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core. Mol. Cell. Biol. 28: 3861-3872.
- Nguyen AT, Zhang Y. 2011. The diverse functions of Dot1 and H3K79 methylation. Gene Dev. 25: 1345-1358.
- Park JH, Cosgrove MS, Youngman E, Wolberger C, Boeke JD. 2002. A core nucleosome surface crucial for transcriptional silencing. Nat. Genet. 32: 273-279.
- Thompson JS, Snow ML, Giles S, McPherson LE, Grunstein M. 2003. Identification of a functional domain within the essential core of histone H3 that is required for telomeric and HM silencing in Saccharomyces cerevisiae. Genetics 163: 447-452.
- Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, et al. 2005. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438: 1116-1122.
- Martino F, Kueng S, Robinson P, Tsai-Pflugfelder M, van Leeuwen F, Ziegler M, et al. 2009. Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro. Mol. Cell 33: 323-334.
- Altaf M, Utley RT, Lacoste N, Tan S, Briggs SD, Cote J. 2007. Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol. Cell 28: 1002-1014.
- Wang X, Wang H, Xu B, Jiang D, Huang S, Yu H, et al. 2019. Depletion of H3K79 methyltransferase Dot1L promotes cell invasion and cancer stem-like cell property in ovarian cancer. Am. J. Transl. Res. 11: 1145-1153.