DOI QR코드

DOI QR Code

Cellular Stress Responses against Coronavirus Infection: A Means of the Innate Antiviral Defense

  • Ji-Seung Yoo (School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University)
  • Received : 2023.07.27
  • Accepted : 2023.09.06
  • Published : 2024.01.28

Abstract

Cellular stress responses are crucial for maintaining cellular homeostasis. Stress granules (SGs), activated by eukaryotic translation initiation factor 2 alpha (eIF2α) kinases in response to various stimuli, play a pivotal role in dealing with diverse stress conditions. Viral infection, as one kind of cellular stress, triggers specific cellular programs aimed at overcoming virus-induced stresses. Recent studies have revealed that virus-derived stress responses are tightly linked to the host's antiviral innate immunity. Virus infection-induced SGs act as platforms for antiviral sensors, facilitating the initiation of protective antiviral responses called "antiviral stress granules" (avSGs). However, many viruses, including coronaviruses, have evolved strategies to suppress avSG formation, thereby counteracting the host's immune responses. This review discusses the intricate relationship between cellular stress responses and antiviral innate immunity, with a specific focus on coronaviruses. Furthermore, the diverse mechanisms employed by viruses to counteract avSGs are described.

Keywords

References

  1. Muralidharan S, Mandrekar P. 2013. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J. Leukoc. Biol. 94: 1167-1184. 
  2. Slavich GM. 2016. Life stress and health: A review of conceptual issues and recent findings. Teach. Psychol. 43: 346-355. 
  3. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. 2016. The integrated stress response. EMBO Rep. 17: 1374-1395. 
  4. Wan Q, Song D, Li H, He ML. 2020. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct. Target. Ther. 5: 125. 
  5. Girardin SE, Cuziol C, Philpott DJ, Arnoult D. 2021. The eIF2alpha kinase HRI in innate immunity, proteostasis, and mitochondrial stress. FEBS J. 288: 3094-3107. 
  6. Onomoto K, Yoneyama M, Fung G, Kato H, Fujita T. 2014. Antiviral innate immunity and stress granule responses. Trends Immunol. 35: 420-428. 
  7. Fulda S, Gorman AM, Hori O, Samali A. 2010. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010: 214074. 
  8. Wek RC. 2018. Role of eIF2alpha kinases in translational control and adaptation to cellular stress. Cold Spring Harb. Perspect. Biol. 10: a032870 
  9. Ivanov P, Kedersha N, Anderson P. 2019. Stress granules and processing bodies in translational control. Cold Spring Harb. Perspect. Biol. 11. a032813 
  10. Abdel-Nour M, Carneiro LAM, Downey J, Tsalikis J, Outlioua A, Prescott D, et al. 2019. The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science 365: eaaw4144 
  11. McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, et al. 2005. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J. Biol. Chem. 280: 16925-16933. 
  12. Mukherjee T, Ramaglia V, Abdel-Nour M, Bianchi AA, Tsalikis J, Chau HN, et al. 2021. The eIF2alpha kinase HRI triggers the autophagic clearance of cytosolic protein aggregates. J. Biol. Chem. 296: 100050. 
  13. von Hoven G, Neukirch C, Meyenburg M, Fuser S, Petrivna MB, Rivas AJ, et al. 2015. eIF2alpha confers cellular tolerance to S. aureus alpha-toxin. Front. Immunol. 6: 383. 
  14. Kloft N, Neukirch C, Bobkiewicz W, Veerachato G, Busch T, von Hoven G, et al. 2010. Pro-autophagic signal induction by bacterial pore-forming toxins. Med. Microbiol. Immunol. 199: 299-309. 
  15. Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. 2000. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol. Cell 6: 269-279. 
  16. Berlanga JJ, Ventoso I, Harding HP, Deng J, Ron D, Sonenberg N, et al. 2006. Antiviral effect of the mammalian translation initiation factor 2alpha kinase GCN2 against RNA viruses. EMBO J. 25: 1730-1740. 
  17. del Pino J, Jimenez JL, Ventoso I, Castello A, Munoz-Fernandez MA, de Haro C, Berlanga JJ. 2012. GCN2 has inhibitory effect on human immunodeficiency virus-1 protein synthesis and is cleaved upon viral infection. PLoS One 7: e47272. 
  18. Jaspart A, Calmels C, Cosnefroy O, Bellecave P, Pinson P, Claverol S, et al. 2017. GCN2 phosphorylates HIV-1 integrase and decreases HIV-1 replication by limiting viral integration. Sci. Rep. 7: 2283. 
  19. Afroz S, Battu S, Giddaluru J, Khan N. 2020. Dengue virus induced COX-2 signaling is regulated through nutrient sensor GCN2. Front. Immunol. 11: 1831. 
  20. Lin CK, Tseng CK, Wu YH, Liaw CC, Lin CY, Huang CH, et al. 2017. Cyclooxygenase-2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents. Sci. Rep. 7: 44701. 
  21. Sander WJ, O'Neill HG, Pohl CH. 2017. Prostaglandin E(2) as a modulator of viral infections. Front. Physiol. 8: 89. 
  22. Liu Z, Lv Y, Zhao N, Guan G, Wang J. 2015. Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death Dis. 6: e1822. 
  23. Shi J, Li Z, Xu R, Zhang J, Zhou Q, Gao R, et al. 2022. The PERK/PKR-eIF2α pathway negatively regulates porcine hemagglutinating encephalomyelitis virus replication by attenuating global protein translation and facilitating stress granule formation. J. Virol. 96: e0169521. 
  24. Zhou Y, Fang L, Wang D, Cai K, Chen H, Xiao S. 2017. Porcine reproductive and respiratory syndrome virus infection induces stress granule formation depending on protein kinase R-like Endoplasmic Reticulum Kinase (PERK) in MARC-145 cells. Front. Cell. Infect. Microbiol. 7: 111. 
  25. Dahal B, Lehman CW, Akhrymuk I, Bracci NR, Panny L, Barrera MD, et al. 2021. PERK is critical for alphavirus nonstructural protein translation. Viruses 13. 892 
  26. Hur S. 2019. Double-stranded RNA sensors and modulators in innate immunity. Annu. Rev. Immunol. 37: 349-375. 
  27. Feng GS, Chong K, Kumar A, Williams BR. 1992. Identification of double-stranded RNA-binding domains in the interferon-induced double-stranded RNA-activated p68 kinase. Proc. Natl. Acad. Sci. USA 89: 5447-5451. 
  28. Nallagatla SR, Hwang J, Toroney R, Zheng X, Cameron CE, Bevilacqua PC. 2007. 5'-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 318: 1455-1458. 
  29. Williams BR. 1999. PKR; a sentinel kinase for cellular stress. Oncogene 18: 6112-6120. 
  30. Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. 2019. Translational control in virus-infected cells. Cold Spring Harb. Perspect. Biol. 11. a033001 
  31. Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, et al. 2012. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One 7: e43031. 
  32. Yoo JS, Takahasi K, Ng CS, Ouda R, Onomoto K, Yoneyama M, et al. 2014. DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation. PLoS Pathog. 10: e1004012. 
  33. Oh SW, Onomoto K, Wakimoto M, Onoguchi K, Ishidate F, Fujiwara T, et al. 2016. Leader-containing uncapped viral transcript activates RIG-I in antiviral stress granules. PLoS Pathog. 12: e1005444. 
  34. Ng CS, Jogi M, Yoo JS, Onomoto K, Koike S, Iwasaki T, et al. 2013. Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses. J. Virol. 87: 9511-9522. 
  35. Yoo JS, Kato H, Fujita T. 2014. Sensing viral invasion by RIG-I like receptors. Curr. Opin. Microbiol. 20: 131-138. 
  36. Fung TS, Liu DX. 2019. Human Coronavirus: Host-Pathogen Interaction. Annu. Rev. Microbiol. 73: 529-557. 
  37. Kasuga Y, Zhu B, Jang KJ, Yoo JS. 2021. Innate immune sensing of coronavirus and viral evasion strategies. Exp. Mol. Med. 53: 723-736. 
  38. Jackson CB, Farzan M, Chen B, Choe H. 2022. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23: 3-20. 
  39. V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. 2021. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19: 155-170. 
  40. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5: 730-737. 
  41. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732-738. 
  42. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529-1531. 
  43. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, et al. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205: 1601-1610. 
  44. Kawai T, Akira S. 2008. Toll-like receptor and RIG-I-like receptor signaling. Ann. NY Acad. Sci. 1143: 1-20. 
  45. Zalinger ZB, Elliott R, Rose KM, Weiss SR. 2015. MDA5 Is critical to host defense during infection with murine coronavirus. J. Virol. 89: 12330-12340. 
  46. Zust R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, et al. 2011. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12: 137-143. 
  47. Li J, Liu Y, Zhang X. 2010. Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J. Virol. 84: 6472-6482. 
  48. Thorne LG, Reuschl AK, Zuliani-Alvarez L, Whelan MVX, Turner J, Noursadeghi M, et al. 2021. SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation. EMBO J. 40: e107826. 
  49. Yin X, Riva L, Pu Y, Martin-Sancho L, Kanamune J, Yamamoto Y, et al. 2021. MDA5 Governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep. 34: 108628. 
  50. Dosch SF, Mahajan SD, Collins AR. 2009. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro. Virus Res. 142: 19-27. 
  51. Totura AL, Whitmore A, Agnihothram S, Schafer A, Katze MG, Heise MT, et al. 2015. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio 6: e00638-00615. 
  52. Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. 2020. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370. eabd4570 
  53. van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. 2020. Presence of genetic variants among young men with severe COVID-19. JAMA 324: 663-673. 
  54. McCormick C, Khaperskyy DA. 2017. Translation inhibition and stress granules in the antiviral immune response. Nat. Rev. Immunol. 17: 647-660. 
  55. Fung G, Ng CS, Zhang J, Shi J, Wong J, Piesik P, et al. 2013. Production of a dominant-negative fragment due to G3BP1 cleavage contributes to the disruption of mitochondria-associated protective stress granules during CVB3 infection. PLoS One 8: e79546. 
  56. Emara MM, Brinton MA. 2007. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc. Natl. Acad. Sci. USA 104: 9041-9046. 
  57. Basu M, Courtney SC, Brinton MA. 2017. Arsenite-induced stress granule formation is inhibited by elevated levels of reduced glutathione in West Nile virus-infected cells. PLoS Pathog. 13: e1006240. 
  58. Simpson-Holley M, Kedersha N, Dower K, Rubins KH, Anderson P, Hensley LE, et al. 2011. Formation of antiviral cytoplasmic granules during orthopoxvirus infection. J. Virol. 85: 1581-1593. 
  59. Yoo JS, Sasaki M, Cho SX, Kasuga Y, Zhu B, Ouda R, et al. 2021. SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis. Nat. Commun. 12: 6602. 
  60. Zheng Y, Deng J, Han L, Zhuang MW, Xu Y, Zhang J, et al. 2022. SARS-CoV-2 NSP5 and N protein counteract the RIG-I signaling pathway by suppressing the formation of stress granules. Signal Transduct. Target. Ther. 7: 22. 
  61. Zheng ZQ, Wang SY, Xu ZS, Fu YZ, Wang YY. 2021. SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication. Cell Discov. 7: 38. 
  62. Nabeel-Shah S, Lee H, Ahmed N, Burke GL, Farhangmehr S, Ashraf K, et al. 2022. SARS-CoV-2 nucleocapsid protein binds host mRNAs and attenuates stress granules to impair host stress response. iScience 25: 103562. 
  63. Liu H, Bai Y, Zhang X, Gao T, Liu Y, Li E, et al. 2022. SARS-CoV-2 N protein antagonizes stress granule assembly and IFN production by interacting with G3BPs to facilitate viral replication. J. Virol. 96: e0041222. 
  64. Dolliver SM, Kleer M, Bui-Marinos MP, Ying S, Corcoran JA, Khaperskyy DA. 2022. Nsp1 proteins of human coronaviruses HCoV-OC43 and SARS-CoV2 inhibit stress granule formation. PLoS Pathog. 18: e1011041. 
  65. Deng X, Hackbart M, Mettelman RC, O'Brien A, Mielech AM, Yi G, et al. 2017. Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc. Natl. Acad. Sci. USA 114: E4251-E4260. 
  66. Zhao J, Feng D, Zhao Y, Huang M, Zhang X, Zhang G. 2022. Role of stress granules in suppressing viral replication by the infectious bronchitis virus endoribonuclease. J. Virol. 96: e0068622. 
  67. Gao B, Gong X, Fang S, Weng W, Wang H, Chu H, et al. 2021. Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. PLoS Pathog. 17: e1008690. 
  68. Van Treeck B, Parker R. 2019. Principles of stress granules revealed by imaging approaches. Cold Spring Harb. Perspect. Biol. 11: a033068.