DOI QR코드

DOI QR Code

2024 KSoLA consensus on secondary dyslipidemia

  • Hoyoun Won (Cardiovascular-Arrhythmia Center, Chung-Ang University Hospital, Chung-Ang University College of Medicine) ;
  • Jae Hyun Bae (Department of Internal Medicine, Seoul National University Hospital) ;
  • Hyunjung Lim (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Minji Kang (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Minjoo Kim (Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University) ;
  • Sang-Hak Lee (Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine) ;
  • Clinical Practice Guidelines Committee, Korean Society of Lipid and Atherosclerosis (KSoLA) (Korean Society of Lipid and Atherosclerosis (KSoLA))
  • Received : 2024.05.02
  • Accepted : 2024.08.05
  • Published : 2024.09.01

Abstract

Elevated blood cholesterol and triglyceride levels induced by secondary causes are frequently observed. The identification and appropriate handling of these causes are essential for secondary dyslipidemia treatment. Major secondary causes of hypercholesterolemia and hypertriglyceridemia include an unhealthy diet, diseases and metabolic conditions affecting lipid levels, and therapeutic side effects. It is imperative to correct secondary causes prior to initiating conventional lipid-lowering therapy. Guideline-based lipid therapy can then be administered based on the subsequent lipid levels.

Keywords

Acknowledgement

This paper is published in duplicate in the Korean Journal of Internal Medicine and the Journal of Lipid and Atherosclerosis.

References

  1. Choi H, Kang SH, Jeong SW, et al. Lipid-lowering efficacy of combination therapy with moderate-intensity statin and ezetimibe versus high-intensity statin monotherapy: a randomized, open-label, non-inferiority trial from Korea. J Lipid Atheroscler 2023;12:277-289.
  2. Kang Y, Park JM, Lee SH. Moderate-intensity rosuvastatin/ezetimibe combination versus quadruple-dose rosuvastatin monotherapy: a meta-analysis and systemic review. Yonsei Med J 2024;65:19-26.
  3. Park KY, Hong S, Kim KS, Han K, Park CY. Trends in prevalence of hypertriglyceridemia and related factors in Korean adults: a serial cross-sectional study. J Lipid Atheroscler 2023;12:201-212.
  4. Tarim BA, Fici F, Tengiz I, et al. Do statins counteract the effect of antidiabetic drugs? Results of the SCEAD study. Yonsei Med J 2023;64:175-180.
  5. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020;41:111-188.
  6. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2019;73:3168-3209.
  7. Jin ES, Shim JS, Kim SE, et al. Dyslipidemia fact sheet in South Korea, 2022. J Lipid Atheroscler 2023;12:237-251.
  8. Hong S, Han K, Park JH, Yu SH, Lee CB, Kim DS. Higher non-high-density lipoprotein cholesterol was higher associated with cardiovascular disease comparing higher LDL-C in nine years follow up: cohort study. J Lipid Atheroscler 2023;12:164-174.
  9. Simha V. Management of hypertriglyceridemia. BMJ 2020;371:m3109.
  10. Chen HJ, Chuang SY, Chang HY, Pan WH. Energy intake at different times of the day: Its association with elevated total and LDL cholesterol levels. Nutr Metab Cardiovasc Dis 2019;29:390-397.
  11. Magriplis E, Marakis G, Kotopoulou S, et al. Trans fatty acid intake increases likelihood of dyslipidemia especially among individuals with higher saturated fat consumption. Rev Cardiovasc Med 2022;23:130.
  12. Hu FB, Manson JE, Willett WC. Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr 2001;20:5-19.
  13. Sun Y, Neelakantan N, Wu Y, Lote-Oke R, Pan A, van Dam RM. Palm oil consumption increases LDL cholesterol compared with vegetable oils low in saturated fat in a meta-analysis of clinical trials. J Nutr 2015;145:1549-58.
  14. Fernandez ML, West KL. Mechanisms by which dietary fatty acids modulate plasma lipids. J Nutr 2005;135:2075-2078.
  15. Hannon BA, Khan NA, Teran-Garcia M. Nutrigenetic contributions to dyslipidemia: a focus on physiologically relevant pathways of lipid and lipoprotein metabolism. Nutrients 2018;10:1404.
  16. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. Trans fatty acids and cardiovascular disease. N Engl J Med 2006;354:1601-1613.
  17. Oteng AB, Kersten S. Mechanisms of action of trans fatty acids. Adv Nutr 2020;11:697-708.
  18. Jung CH, Choi KM. Impact of high-carbohydrate diet on metabolic parameters in patients with type 2 diabetes. Nutrients 2017;9:322.
  19. Chawla S, Tessarolo Silva F, Amaral Medeiros S, Mekary RA, Radenkovic D. The effect of low-fat and low-carbohydrate diets on weight loss and lipid levels: a systematic review and meta-analysis. Nutrients 2020;12:3774.
  20. Dong T, Guo M, Zhang P, Sun G, Chen B. The effects of low-carbohydrate diets on cardiovascular risk factors: a meta-analysis. PLoS One 2020;15:e0225348.
  21. Fechner E, Smeets ETHC, Schrauwen P, Mensink RP. The effects of different degrees of carbohydrate restriction and carbohydrate replacement on cardiometabolic risk markers in humans-a systematic review and meta-analysis. Nutrients 2020;12:991.
  22. David Wang D, Sievenpiper JL, de Souza RJ, et al. Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 2014;232:125-133.
  23. Kim SA, Shin S. Red meat and processed meat consumption and the risk of dyslipidemia in Korean adults: a prospective cohort study based on the Health Examinees (HEXA) study. Nutr Metab Cardiovasc Dis 2021;31:1714-1727.
  24. Welsh JA, Sharma A, Abramson JL, Vaccarino V, Gillespie C, Vos MB. Caloric sweetener consumption and dyslipidemia among US adults. JAMA 2010;303:1490-1497.
  25. Haslam DE, Peloso GM, Herman MA, et al. Beverage consumption and longitudinal changes in lipoprotein concentrations and incident dyslipidemia in US adults: the Framingham Heart study. J Am Heart Assoc 2020;9:e014083.
  26. Stanhope KL. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci 2016;53:52-67.
  27. World Health Organization. Use of non-sugar sweeteners: WHO guideline [Internet]. Geneva: World Health Organization, c2023 [cited 2023 Oct 23]. Available from: https://www.who.int/publications/i/item/9789240073616.
  28. Donat-Vargas C, Sandoval-Insausti H, Rey-Garcia J, et al. High consumption of ultra-processed food is associated with incident dyslipidemia: a prospective study of older adults. J Nutr 2021;151:2390-2398.
  29. Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ 1999;319:1523-1528.
  30. Rader DJ, Kathiresan S. Disorders of lipoprotein metabolism. In: Jameson JL, Kasper DL, Longo DL, Fauci AS, Hauser SL, Loscalzo, ed. Harrison's principles of internal medicine. 20th ed. New York: McGraw-Hill Education, 2018.
  31. Kwan TW, Wong SS, Hong Y, et al. Epidemiology of diabetes and atherosclerotic cardiovascular disease among Asian American adults: implications, management, and future directions: a scientific statement from the American Heart Association. Circulation 2023;148:74-94.
  32. Lee J, Hoang T, Lee S, Kim J. Association between dietary patterns and dyslipidemia in Korean women. Front Nutr 2022;8:756257.
  33. Lichtenstein AH, Appel LJ, Vadiveloo M, et al. 2021 dietary guidance to improve cardiovascular health: a scientific statement from the American Heart Association. Circulation 2021;144:e472-e487.
  34. Pasanisi F, Contaldo F, de Simone G, Mancini M. Benefits of sustained moderate weight loss in obesity. Nutr Metab Cardiovasc Dis 2001;11:401-406.
  35. Kirkpatrick CF, Sikand G, Petersen KS, et al. Nutrition interventions for adults with dyslipidemia: a clinical perspective from the National Lipid Association. J Clin Lipidol 2023;17:428-451.
  36. Sacks FM, Bray GA, Carey VJ, et al. Comparison of weightloss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009;360:859-73.
  37. Ministry of Health and Welfare, The Korean Nutrition Society. Application of 2020 dietary reference intakes for Koreans. Sejong: Ministry of Health and Welfare, 2021.
  38. Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2015;(6):CD011737.
  39. Hannon BA, Thompson SV, An R, Teran-Garcia M. Clinical outcomes of dietary replacement of saturated fatty acids with unsaturated fat sources in adults with overweight and obesity: a systematic review and meta-analysis of randomized control trials. Ann Nutr Metab 2017;71:107-117.
  40. Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020;5:CD011737.
  41. Guasch-Ferre M, Satija A, Blondin SA, et al. Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation 2019;139:1828-1845.
  42. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 2019;393:434-445.
  43. Soliman GA. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 2019;11:1155.
  44. World Health Organization. Healthy diet [Internet]. Geneva: World Health Organization, c2020 [cited 2023 Oct 16]. Available from: https://www.who.int/news-room/fact-sheets/detail/healthy-diet.
  45. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021;42:3227-3337.
  46. Virani SS, Morris PB, Agarwala A, et al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 2021;78:960-993.
  47. Snetselaar LG, de Jesus JM, DeSilva DM, Stoody EE. Dietary guidelines for Americans, 2020-2025: understanding the scientific process, guidelines, and key recommendations. Nutr Today 2021;56:287-295.
  48. Liu H, Peng D. Update on dyslipidemia in hypothyroidism: the mechanism of dyslipidemia in hypothyroidism. Endocr Connect 2022;11:e210002.
  49. Wah-Suarez MI, Danford CJ, Patwardhan VR, Jiang ZG, Bonder A. Hyperlipidaemia in primary biliary cholangitis: treatment, safety and efficacy. Frontline Gastroenterol 2019;10:401-408.
  50. Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE. Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 2018;14:57-70.
  51. Kotwal A, Cortes T, Genere N, et al. Treatment of thyroid dysfunction and serum lipids: a systematic review and meta-analysis. J Clin Endocrinol Metab 2020;105:dgaa672.
  52. Mantel-Teeuwisse AK, Kloosterman JM, Maitland-van der Zee AH, Klungel OH, Porsius AJ, de Boer A. Drug-Induced lipid changes: a review of the unintended effects of some commonly used drugs on serum lipid levels. Drug Saf 2001;24:443-456.
  53. Donahoo WT, Kosmiski LA, Eckel RH. Drugs causing dyslipoproteinemia. Endocrinol Metab Clin North Am 1998;27:677-697.
  54. Boots JM, Christiaans MH, van Hooff JP. Effect of immunosuppressive agents on long-term survival of renal transplant recipients: focus on the cardiovascular risk. Drugs 2004;64:2047-2073.
  55. Winegar DA, Salisbury JA, Sundseth SS, Hawke RL. Effects of cyclosporin on cholesterol 27-hydroxylation and LDL receptor activity in HepG2 cells. J Lipid Res 1996;37:179-191.
  56. Myerson M. Lipid management in human immunodeficiency virus. Endocrinol Metab Clin North Am 2016;45:141-169.
  57. Nduka C, Sarki A, Uthman O, Stranges S. Impact of antiretroviral therapy on serum lipoprotein levels and dyslipidemias: a systematic review and meta-analysis. Int J Cardiol 2015;199:307-318.
  58. Lazarte J, Kanagalingam T, Hegele RA. Lipid effects of sodium-glucose cotransporter 2 inhibitors. Curr Opin Lipidol 2021;32:183-190.
  59. Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia 2015;58:886-899.
  60. Eckel RH. The complex metabolic mechanisms relating obesity to hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2011;31:1946-1948.
  61. Vaziri ND. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int 2016;90:41-52.
  62. Moradi H, Vaziri ND. Molecular mechanisms of disorders of lipid metabolism in chronic kidney disease. Front Biosci (Landmark Ed) 2018;23:146-161.
  63. de Carvalho JF, Borba EF, Viana VS, Bueno C, Leon EP, Bonfa E. Anti-lipoprotein lipase antibodies: a new player in the complex atherosclerotic process in systemic lupus erythematosus? Arthritis Rheum 2004;50:3610-3615.
  64. Yamamoto H, Tanaka M, Yoshiga S, Funahashi T, Shimomura I, Kihara S. Autoimmune severe hypertriglyceridemia induced by anti-apolipoprotein C-II antibody. J Clin Endocrinol Metab 2014;99:1525-1530.
  65. Miyashita K, Lutz J, Hudgins LC, et al. Chylomicronemia from GPIHBP1 autoantibodies. J Lipid Res 2020;61:1365-1376.
  66. Green P, Theilla M, Singer P. Lipid metabolism in critical illness. Curr Opin Clin Nutr Metab Care 2016;19:111-115.
  67. Gupta M, Liti B, Barrett C, Thompson PD, Fernandez AB. Prevention and management of hypertriglyceridemia-induced acute pancreatitis during pregnancy: a systematic review. Am J Med 2022;135:709-714.
  68. Yoneyama K, Nakagawa M. Severe acute pancreatitis due to tamoxifen-induced hypertriglyceridemia. Breast J 2019;25:788-789.