DOI QR코드

DOI QR Code

DOT1-like histone lysine methyltransferase is critical for adult vessel maintenance and functions

  • HeeJi Lee (Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University) ;
  • Dong Wook Han (Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University) ;
  • Hyeonwoo La (Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University) ;
  • Chanhyeok Park (Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University) ;
  • Kiye Kang (Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University) ;
  • Ohbeom Kwon (Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University) ;
  • Sang Jun Uhm (Department of Animal Science, Sangji University) ;
  • Hyuk Song (Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University) ;
  • Jeong Tae Do (Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University) ;
  • Youngsok Choi (Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University) ;
  • Kwonho Hong (Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University)
  • Received : 2023.10.06
  • Accepted : 2024.02.16
  • Published : 2024.09.01

Abstract

Objective: Disruptor of telomeric silencing 1-like (DOT1L) is the only known histone H3K79 methyltransferase essential for the development of the embryonic cardiovascular system, including the heart, blood vessels, and lymphatic vessels, through transcriptional regulation. Our previous study demonstrated that Dot1l deletion results in aberrant lymphatic development and function. However, its precise function in the postnatal cardiovascular system remains unknown. Methods: Using conditional and inducible Dot1l knockout (KO) mice, along with a reporter strain carrying the Geo gene at the Dot1l locus, DOT1L expression and its function in the vascular system during postnatal life were investigated. To assess vessel morphology and vascular permeability, we administered Latex or Evans blue dye to KO mice. In addition, in vitro tube formation and cell migration assays were performed using DOT1L-depleted human umbilical vein endothelial cells (HUVECs). Changes in the expression of vascular genes in HUVECs were measured by quantitative polymerase chain reaction. Results: Our findings demonstrate that conditional Dot1l knockout in the Tg (Tie2-cre) strain results in abnormal blood vessel formation and lymphatic anomalies in the intestine. In a mouse model of Rosa26-creER-mediated inducible Dot1l knockout, we observed vascular phenotypes, including increased vascular permeability and brain hemorrhage, when DOT1L was deleted in adulthood. Additionally, DOT1L depletion in cultured HUVECs led to impaired cell migration and tube formation, likely due to altered gene transcription. These findings highlight the essential role of DOT1L in maintaining vascular integrity and function during embryonic development and postnatal life. Conclusion: Our study revealed that DOT1L is required for the maintenance of adult vascular function through the regulation of gene expression.

Keywords

Acknowledgement

The authors are indebted to all the members of the KH lab for helpful discussion.

References

  1. Qiu J, Hirschi KK. Endothelial cell development and its application to regenerative medicine. Circ Res 2019;125:489-501. https://doi.org/10.1161/CIRCRESAHA.119.311405
  2. Potente M, Makinen T. Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017;18:477-94. https://doi.org/10.1038/nrm.2017.36
  3. Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol 2023;20:197-210. https://doi.org/10.1038/s41569-022-00770-1
  4. Liu X, Uemura A, Fukushima Y, Yoshida Y, Hirashima M. Semaphorin 3G provides a repulsive guidance cue to lymphatic endothelial cells via Neuropilin-2/PlexinD1. Cell Rep 2016;17:2299-311. https://doi.org/10.1016/j.celrep.2016.11.008
  5. Chen J, He J, Ni R, Yang Q, Zhang Y, Luo L. Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in zebrafish. Dev Cell 2019;49:697-710 e5. https://doi.org/10.1016/j.devcel.2019.03.022
  6. Chiang IKN, Graus MS, Kirschnick N, et al. The blood vasculature instructs lymphatic patterning in a SOX7-dependent manner. EMBO J 2023;42:e109032. https://doi.org/10.15252/embj.2021109032
  7. Srinivasan RS, Dillard ME, Lagutin OV, et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 2007;21:2422-32. https://doi.org/10.1101/gad.1588407
  8. Klotz L, Norman S, Vieira JM, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 2015;522:62-7. https://doi.org/10.1038/nature14483
  9. Martinez-Corral I, Ulvmar MH, Stanczuk L, et al. Nonvenous origin of dermal lymphatic vasculature. Circ Res 2015;116:1649-54. https://doi.org/10.1161/CIRCRESAHA.116.306170
  10. Pichol-Thievend C, Betterman KL, Liu X, et al. A blood capillary plexus-derived population of progenitor cells contributes to genesis of the dermal lymphatic vasculature during embryonic development. Development 2018;145:dev160184. https://doi.org/10.1242/dev.160184
  11. Maruyama K, Miyagawa-Tomita S, Mizukami K, Matsuzaki F, Kurihara H. Isl1-expressing non-venous cell lineage contributes to cardiac lymphatic vessel development. Dev Biol 2019;452:134-43. https://doi.org/10.1016/j.ydbio.2019.05.002
  12. Lioux G, Liu X, Temino S, et al. A second heart field-derived vasculogenic niche contributes to cardiac lymphatics. Dev Cell 2020;52:350-63 e6. https://doi.org/10.1016/j.devcel.2019.12.006
  13. Aquino JB, Sierra R, Montaldo LA. Diverse cellular origins of adult blood vascular endothelial cells. Dev Biol 2021;477:117-32. https://doi.org/10.1016/j.ydbio.2021.05.010
  14. Stone OA, Stainier DYR. Paraxial mesoderm is the major source of lymphatic endothelium. Dev Cell 2019;50:247-55e3. https://doi.org/10.1016/j.devcel.2019.04.034
  15. Lenti E, Genovese L, Bianchessi S, et al. Fate mapping and scRNA sequencing reveal origin and diversity of lymph node stromal precursors. Immunity 2022;55:606-22 e6. https://doi.org/10.1016/j.immuni.2022.03.002
  16. Yan MS, Marsden PA. Epigenetics in the vascular endothelium: looking from a different perspective in the epigenomics era. Arterioscler Thromb Vasc Biol 2015;35:2297-306. https://doi.org/10.1161/ATVBAHA.115.305043
  17. Tacconi C, He Y, Ducoli L, Detmar M. Epigenetic regulation of the lineage specificity of primary human dermal lymphatic and blood vascular endothelial cells. Angiogenesis 2021;24:67-82. https://doi.org/10.1007/s10456-020-09743-9
  18. Nguyen AT, He J, Taranova O, Zhang Y. Essential role of DOT1L in maintaining normal adult hematopoiesis. Cell Res 2011;21:1370-3. https://doi.org/10.1038/cr.2011.115
  19. Nguyen AT, Xiao B, Neppl RL, et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 2011;25:263-74. https://doi.org/10.1101/gad.2018511
  20. Duan Y, Wu X, Zhao Q, et al. DOT1L promotes angiogenesis through cooperative regulation of VEGFR2 with ETS-1. Oncotarget 2016;7:69674-87. https://doi.org/10.18632/oncotarget.11939
  21. Aslam MA, Alemdehy MF, Kwesi-Maliepaard EM, et al. Histone methyltransferase DOT1L controls state-specific identity during B cell differentiation. EMBO Rep 2021;22:e51184. https://doi.org/10.15252/embr.202051184
  22. Williams SP, Odell AF, Karnezis T, et al. Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling. Sci Signal 2017;10:eaal2987. https://doi.org/10.1126/scisignal.aal2987
  23. Yoo H, Lee YJ, Park C, et al. Epigenetic priming by Dot1l in lymphatic endothelial progenitors ensures normal lymphatic development and function. Cell Death Dis 2020;11:14. https://doi.org/10.1038/s41419-019-2201-1
  24. Yoo H, La H, Park C, et al. Common and distinct functions of mouse Dot1l in the regulation of endothelial transcriptome. Front Cell Dev Biol 2023;11:1176115. https://doi.org/10.3389/fcell.2023.1176115
  25. Yoo H, Son D, Lee YJ, Hong K. Mouse JMJD4 is dispensable for embryogenesis. Mol Reprod Dev 2016;83:588-93. https://doi.org/10.1002/mrd.22654
  26. Park SO, Wankhede M, Lee YJ, et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 2009;119:3487-96. https://doi.org/10.1172/JCI39482
  27. He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 2013;15:373-84. https://doi.org/10.1038/ncb2702
  28. Jones B, Su H, Bhat A, et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 2008;4:e1000190. https://doi.org/10.1371/journal.pgen.1000190
  29. Cardoso-Moreira M, Halbert J, Valloton D, et al. Gene expression across mammalian organ development. Nature 2019;571:505-9. https://doi.org/10.1038/s41586-019-1338-5
  30. Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell-cell interactions and communication from gene expression. Nat Rev Genet 2021;22:71-88. https://doi.org/10.1038/s41576-020-00292-x
  31. Brivanlou AH, Darnell JE, Jr. Signal transduction and the control of gene expression. Science 2002;295:813-8. https://doi.org/10.1126/science.1066355
  32. Isbel L, Grand RS, Schubeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat Rev Genet 2022;23:728-40. https://doi.org/10.1038/s41576-022-00512-6
  33. Chang CP, Bruneau BG. Epigenetics and cardiovascular development. Annu Rev Physiol 2012;74:41-68. https://doi.org/10.1146/annurev-physiol-020911-153242
  34. Gutierrez MEC, Hill MC, Largoza G, Martin JF, Wythe JD. Defining the transcriptional and epigenetic basis of organotypic endothelial diversity in the developing and adult mouse. bioRxiv 2021 Nov 16 [ePub]. https://doi.org/10.1101/2021.11.15.468651
  35. Cattaneo P, Kunderfranco P, Greco C, et al. DOT1L-mediated H3K79me2 modification critically regulates gene expression during cardiomyocyte differentiation. Cell Death Differ 2016;23:555-64. https://doi.org/10.1038/cdd.2014.199
  36. Cattaneo P, Hayes MGB, Baumgarten N, et al. DOT1L regulates chamber-specific transcriptional networks during cardiogenesis and mediates postnatal cell cycle withdrawal. Nat Commun 2022;13:7444. https://doi.org/10.1038/s41467-022-35070-2
  37. Wamstad JA, Alexander JM, Truty RM, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 2012;151:206-20. https://doi.org/10.1016/j.cell.2012.07.035
  38. Park-Windhol C, D'Amore PA. Disorders of vascular permeability. Annu Rev Pathol 2016;11:251-81. https://doi.org/10.1146/annurev-pathol-012615-044506
  39. Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol Med 2021;27:314-31. https://doi.org/10.1016/j.molmed.2020.11.006
  40. Komarova YA, Kruse K, Mehta D, Malik AB. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ Res 2017;120:179-206. https://doi.org/10.1161/CIRCRESAHA.116.306534
  41. Delgado-Olguin P, Dang LT, He D, et al. Ezh2-mediated repression of a transcriptional pathway upstream of Mmp9 maintains integrity of the developing vasculature. Development 2014;141:4610-7. https://doi.org/10.1242/dev.112607
  42. Glaser SF, Heumuller AW, Tombor L, et al. The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition. Proc Natl Acad Sci USA 2020;117:4180-7. https://doi.org/10.1073/pnas.1913481117
  43. Choi JY, Yoon SS, Kim SE, Ahn Jo S. KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels. Sci Rep 2017;7:45005. https://doi.org/10.1038/srep45005
  44. Weng X, Zhang Y, Li Z, et al. Class II transactivator (CIITA) mediates IFN-gamma induced eNOS repression by enlisting SUV39H1. Biochim Biophys Acta Gene Regul Mech 2019;1862:163-72. https://doi.org/10.1016/j.bbagrm.2019.01.005
  45. Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 2015;22:1230-42. https://doi.org/10.1089/ars.2014.6158
  46. Tran N, Garcia T, Aniqa M, Ali S, Ally A, Nauli SM. Endothelial nitric oxide synthase (enos) and the cardiovascular system: in physiology and in disease states. Am J Biomed Sci Res 2022;15:155-79. https://doi.org/10.34297/AJBSR.2022.15.002087
  47. Lee K, Na W, Lee JY, et al. Molecular mechanism of Jmjd3-mediated interleukin-6 gene regulation in endothelial cells underlying spinal cord injury. J Neurochem 2012;122:272-82. https://doi.org/10.1111/j.1471-4159.2012.07786.x
  48. Yu S, Chen X, Xiu M, et al. The regulation of Jmjd3 upon the expression of NF-kappaB downstream inflammatory genes in LPS activated vascular endothelial cells. Biochem Biophys Res Commun 2017;485:62-8. https://doi.org/10.1016/j.bbrc.2017.02.020
  49. Morini MF, Giampietro C, Corada M, et al. VE-cadherin-mediated epigenetic regulation of endothelial gene expression. Circ Res 2018;122:231-45. https://doi.org/10.1161/CIRCRESAHA.117.312392