DOI QR코드

DOI QR Code

Dietary apidaecin Api-PR19 addition enhances growth performance by regulating gut health and microbiota in broilers

  • Chenxu Wang (College of Animal Science and Technology, Northwest A&F University) ;
  • Xinrui Wang (College of Animal Science and Technology, Northwest A&F University) ;
  • Rui Liu (College of Animal Science and Technology, Northwest A&F University) ;
  • Jiyang Min (College of Animal Science and Technology, Northwest A&F University) ;
  • Xiaojun Yang (College of Animal Science and Technology, Northwest A&F University) ;
  • Lixin Zhang (College of Life Sciences, Northwest A&F University)
  • Received : 2023.09.11
  • Accepted : 2024.01.26
  • Published : 2024.09.01

Abstract

Objective: This study investigated the effects of Apidaecin Api-PR19 as feed additive on growth performance, intestinal health, and small intestinal microbiota of broilers. Methods: A total of 360 1-d-old Arbor Acres broilers were randomly assigned to 3 groups with 6 replicates including control group with basal diet (CON), antibiotic growth promotor group with basal plus 10 mg/kg colistin sulfate and 50 mg/kg roxarsone (AGP), and antibacterial peptide group with basal diet plus 330 mg/kg Apidaecin Api-PR19 (ABP). The trial lasted 35 d. Results: Results showed that dietary Api-PR19 addition increased (p<0.05) the average daily feed intake, average daily gain and decreased (p<0.05) feed conversion ratio (FCR) during 1 to 21 d compared with the CON group. The digestibility of dry matter and crude protein were higher in AGP and ABP groups (p<0.05) where greater trypsin activity was detected in duodenum (p<0.05). The ratio of villus height to crypt depth (V/C) in duodenum and jejunum was increased at 35 d when broilers were given diets with ABP or AGP (p<0.05). Besides, ABP treatments up-regulated (p<0.05) the mRNA expression of EAAT3, GLUT2, ZO-1, and Claudin-1 in duodenum of broilers at 35 d of age. The results of immunohistochemistry showed that ABP treatment significantly increased (p<0.05) duodenal secretory immunoglobulin A (sIgA) content. In addition, 16S rRNA gene sequencing revealed that there were differences in the intestinal microbiota diversity and composition among three groups. Notably, the linear discriminant analysis effect size showed that p_Firmicutes, g_Enterococcus, g_Carnobacterium, g_Kitasatospora, and g_Acidaminococcus were dominant in ABP group. Redundancy analysis showed that these changes in gut microbiota in ABP group had correlation with growth performance, intestinal morphology, and content of sIgA. Conclusion: In general, these results indicated that dietary 330 mg/kg Apidaecin ApiPR19 supplementation promoted growth performance of broilers by improving intestinal development, nutrients absorption, immune function and modulating intestinal microbiota.

Keywords

Acknowledgement

The authors acknowledge the support from National Key Research & Development Program of China (2023YFD130 1400), the National Science Foundation of China (32272916), the Program for Shaanxi Science & Technology from Shaanxi Provincial Science and Technology Department (2022GDTSLD-46-0302, 2023KXJ-243, 2023GXJS-02-01, K303122 3075, L2022-QCYZX-NY-004, 2021TD-30, 2019HBGC-16, 2019ZDXM3-02) and the Yongjiang Innovative Research Team.

References

  1. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut 2022;71:1020-32. https://doi.org/10.1136/gutjnl-2021-326789
  2. Abd El-Hack ME, El-Saadony MT, Elbestawy AR, et al. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives-a comprehensive review. Poult Sci 2022;101:101590. https://doi.org/10.1016/j.psj.2021.101590
  3. Broaders E, Gahan CGM, Marchesi JR. Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut Microbes 2013;4: 271-80. https://doi.org/10.4161/gmic.24627
  4. Feng Y, Wang Y, Zhu B, Gao GF, Guo Y, Hu Y. Metagenome-assembled genomes and gene catalog from the chicken gut microbiome aid in deciphering antibiotic resistomes. Commun Biol 2021;4:1305. https://doi.org/10.1038/s42003-021-02827-2
  5. Mehdi Y, Letourneau-Montminy MP, Gaucher ML, et al. Use of antibiotics in broiler production: global impacts and alternatives. Anim Nutr 2018;4:170-8. https://doi.org/10.1016/j.aninu.2018.03.002
  6. Silveira RF, Roque-Borda CA, Vicente EF. Antimicrobial peptides as a feed additive alternative to animal production, food safety and public health implications: an overview. Anim Nutr 2021;7:896-904. https://doi.org/10.1016/j.aninu.2021.01.004
  7. Chen X, Li J, Sun H, et al. High-level heterologous production and functional secretion by recombinant Pichia pastoris of the shortest proline-rich antibacterial honeybee peptide Apidaecin. Sci Rep 2017;7:14543. https://doi.org/10.1038/s41598-017-15149-3
  8. Lee MO, Jang HJ, Rengaraj D, et al. Tissue expression and antibacterial activity of host defense peptides in chicken. BMC Vet Res 2016;12:231. https://doi.org/10.1186/s12917-016-0866-6
  9. Wu S, Wang J, Zhu L, Ren H, Yang X. A novel apidaecin Api-PR19 synergizes with the gut microbial community to maintain intestinal health and promote growth performance of broilers. J Anim Sci Biotechnol 2020;11:61. https://doi.org/10.1186/s40104-020-00462-1
  10. Muniyappan M, Jeon SY, Choi MK, Kim IH. Dietary inclusion of Achyranthes japonica extract to corn-soybean meal-wheat-based diet on the growth performance, nutrient digestibility, cecal microflora, excreta noxious gas emission, and meat quality of broiler chickens. Poult Sci 2022;101:101852. https://doi.org/10.1016/j.psj.2022.101852
  11. Schiavone A, De Marco M, Martinez S, et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J Anim Sci Biotechnol 2017;8:51. https://doi.org/10.1186/s40104-017-0181-5
  12. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  13. Wang DW, Ma W, She R, et al. Effects of swine gut antimicrobial peptides on the intestinal mucosal immunity in specificpathogen-free chickens. Poult Sci 2009;88:967-74. https://doi.org/10.3382/ps.2008-00533
  14. Fadrosh DW, Ma B, Gajer P, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014;2:6. https://doi.org/10.1186/2049-2618-2-6
  15. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303
  16. Annunziato G, Costantino G. Antimicrobial peptides (AMPs): a patent review (2015-2020). Expert Opin Ther Pat 2020;30:931-47. https://doi.org/10.1080/13543776.2020.1851679
  17. Shi J, Zhang P, Xu MM, et al. Effects of composite antimicrobial peptide on growth performance and health in weaned piglets. Anim Sci J 2018;89:397-403. https://doi.org/10.1111/asj.12933
  18. Shan T, Wang Y, Wang Y, Liu J, Xu Z. Effect of dietary lactoferrin on the immune functions and serum iron level of weanling piglets. J Anim Sci 2007;85:2140-6. https://doi.org/10.2527/jas.2006-754
  19. Dai D, K Qiu, Zhang HJ, et al. Organic acids as alternatives for antibiotic growth promoters alter the intestinal structure and microbiota and improve the growth performance in broilers. Front Microbiol 2021;11:618144. https://doi.org/10.3389/fmicb.2020.618144
  20. Cui K, Wang Q, Wang S, Diao Q, Zhang N. The facilitating effect of tartary buckwheat flavonoids and Lactobacillus plantarum on the growth performance, nutrient digestibility, antioxidant capacity, and fecal microbiota of weaned piglets. Animals (Basel) 2019;9:986. https://doi.org/10.3390/ani9110986
  21. Long S, Liu S, Wang J, Mahfuz S, Piao X. Natural capsicum extract replacing chlortetracycline enhances performance via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs. Anim Nutr 2021;7:305-14. https://doi.org/10.1016/j.aninu.2020.12.004
  22. Youssef IMI, Manner K, Zentek J. Effect of essential oils or saponins alone or in combination on productive performance, intestinal morphology and digestive enzymes' activity of broiler chickens. J Anim Physiol Anim Nutr (Berl) 2021;105:99-107. https://doi.org/10.1111/jpn.13431
  23. Cao GT, Zeng XF, Chen AG, et al. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult Sci 2013;92:2949-55. https://doi.org/10.3382/ps.2013-03366
  24. Lin M, Zhang B, Yu C, et al. L-glutamate supplementation improves small intestinal architecture and enhances the expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. PLoS One 2014;9:e111950. https://doi.org/10.1371/journal.pone.0111950
  25. Liu T, She R, Wang K, et al. Effects of rabbit sacculus rotundus antimicrobial peptides on the intestinal mucosal immunity in chickens. Poult Sci 2008;87:250-4. https://doi.org/10.3382/ps.2007-00353
  26. Yu H, Shang L, Zeng X, et al. Risks related to high-dosage recombinant antimicrobial peptide microcin J25 in mice model: intestinal microbiota, intestinal barrier function, and immune regulation. J Agric Food Chem 2018;66:11301-10. https://doi.org/10.1021/acs.jafc.8b03405
  27. Sassone-Corsi M, Nuccio SP, Liu H, et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 2016;540:280-3. https://doi.org/10.1038/nature20557
  28. Yu H, Ma Z, Meng S, et al. A novel nanohybrid antimicrobial based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity. Carbohydr Polym 2021;253:117309. https://doi.org/10.1016/j.carbpol.2020.117309
  29. Xie Z, Zhao Q, Wang H, et al. Effects of antibacterial peptide combinations on growth performance, intestinal health, and immune function of broiler chickens. Poult Sci 2020;99:6481-92. https://doi.org/10.1016/j.psj.2020.08.068
  30. Fasano A, Nataro JP. Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev 2004;56:795-807. https://doi.org/10.1016/j.addr.2003.10.045
  31. Tappenden KA. Mechanisms of enteral nutrient-enhanced intestinal adaptation. Gastroenterology 2006;130:S93-9. https://doi.org/10.1053/j.gastro.2005.11.051
  32. Huang P, Zhang Y, Xiao K, et al. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome 2018;6:211. https://doi.org/10.1186/s40168-018-0590-5
  33. Gao P, Ma C, Sun Z, et al. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome 2017;5:91. https://doi.org/10.1186/s40168-017-0315-1
  34. Ahuja M, Schwartz DM, Tandon M, et al. Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab 2017;25:635-46. https://doi.org/10.1016/j.cmet.2017.02.007
  35. Martinez-Guryn K, Hubert N, Frazier K, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 2018;23:458-69. https://doi.org/10.1016/j.chom.2018.03.011
  36. Franz CMAP. Huch M, Abriouel H, Holzapfel W, Galvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 2011;151:125-40. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014
  37. Robertson PAW, O'Dowd C, Burrells C, Williams P, Austin B. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 2020;185:235-43. https://doi.org/10.1016/S0044-8486(99)00349-X
  38. Girard G, Willemse J, Zhu H, et al. Analysis of novel kitasatosporae reveals significant evolutionary changes in conserved developmental genes between Kitasatospora and Streptomyces. Antonie Van Leeuwenhoek 2014;106:365-80. https://doi.org/10.1007/s10482-014-0209-1
  39. Yin D, Wang Y, Wang L, et al. Insights into the proteomic profile of newly harvested corn and metagenomic analysis of the broiler intestinal microbiota. J Anim Sci Biotechnol 2022;13:26. https://doi.org/10.1186/s40104-021-00656-1
  40. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139:485-98. https://doi.org/10.1016/j.cell.2009.09.033