DOI QR코드

DOI QR Code

Characterization of flavonoid and quinic acid derivatives from Calystegia soldanella with antioxidant activities

  • Ji-Yul Kim (National Marine Biodiversity Institute of Korea) ;
  • Gun-Woo Oh (National Marine Biodiversity Institute of Korea) ;
  • Dae-Cheol Choi (Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University) ;
  • Kyung Lee (National Marine Biodiversity Institute of Korea) ;
  • Seok-Chun Ko (National Marine Biodiversity Institute of Korea) ;
  • Mi-Jin Yim (National Marine Biodiversity Institute of Korea) ;
  • Jeong Min Lee (National Marine Biodiversity Institute of Korea) ;
  • Dae-Won Ki (Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University) ;
  • Kyung Woo Kim (National Marine Biodiversity Institute of Korea) ;
  • Chul Hwan Kim (National Marine Biodiversity Institute of Korea) ;
  • Moongeun Yoon (National Marine Biodiversity Institute of Korea) ;
  • Dae-Sung Lee (National Marine Biodiversity Institute of Korea)
  • Received : 2024.05.17
  • Accepted : 2024.06.29
  • Published : 2024.10.31

Abstract

Calystegia soldanella is a species broadly used in an edible source and traditional herb in South Korea and China. It has diverse bioactivities, such as dropsy, antipyretic, and diuretic effect. In this study, we investigated the main components with antioxidant activities from the 70% EtOH extract of C. soldanella. The structural determination of compounds was achieved by nuclear magnetic resonance and HR-ESI-MS spectroscopic data. The main components from C. soldanella were identified as flavonoids and quinic acid derivatives. Furthermore, the 70% EtOH extract, partitioned layers, and compounds (1-8) of C. soldanella were evaluated for their antioxidant effects. The most active compound 8 (isochlorogenic acid C) exhibited the IC50 values of 12.4 ± 0.1 (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical) and 37.9 ± 0.5 μM (2,2-diphenyl-1-picrylhydrazyl radical), respectively. Two active compounds (7 and 8) displayed higher activities than ascorbic acid (positive control). In addition, we also confirmed the antioxidant effects on the intracellular reactive oxygen species production of compound 8. Therefore, the present study suggests extract of C. soldanella is a promising natural antioxidative candidate.

Keywords

Acknowledgement

This research was supported by the National Marine Biodiversity Institute of Korea (MABIK) Research Program (grant number 2024M00500).

References

  1. Batty M, Bennett MR, Yu E. The role of oxidative stress in atherosclerosis. Cells. 2022;11:3843.
  2. Dong C, Fang W, Yi Q, Zhang J. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). Chemosphere. 2022;308:136205.
  3. Eom T, Kim IH, Kim HJ, Choi YH, Nam TJ. Calystegia soldanella extract exerts anti-oxidative and anti-inflammatory effects via the regulation of the NF-κB/Nrf-2 pathways in mouse macrophages. Antioxidants. 2021;10:1639.
  4. Ganbaatar C, Gruner M, Mishig D, Duger R, Schmidt AW, Knolker HJ. Flavonoid glycosides from the aerial parts of Polygonatum odoratum (Mill.) Druce growing in Mongolia. Open Nat Prod J. 2015;8:1-7. https://doi.org/10.2174/1874848101508010001
  5. Halliwell B. Reactive oxygen species (ROS), oxygen radicals and antioxidants: where are we now, where is the field going and where should we go? Biochem Biophys Res Commun. 2022;633:17-9. https://doi.org/10.1016/j.bbrc.2022.08.098
  6. Hassan SM, Al Aqil AA, Attimarad M. Determination of crude saponin and total flavonoids content in guar meal. Adv Med Plant Res. 2013;1:24-8.
  7. Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24:325-40. https://doi.org/10.5607/en.2015.24.4.325
  8. Kim JY, Lee JM, Kim HS, Ki DW, Yim MJ, Ko SC, et al. A new butenolide derivative from the brown alga Sargassum micracanthum. Nat Prod Commun. 2022;17:1-4. https://doi.org/10.1177/1934578X211068606
  9. Kim JY, Son E, Kim DS. One new veratramine-type alkaloid from Veratrum maackii var. japonicum and antioxidative activities of isolated compounds. Nat Prod Commun. 2020;15:1-5.
  10. Lee HJ, Lee JY, Kim SM, Nho CW, Jung SH, Song DG, et al. Inhibitory effects of dicaffeoylquinic acids from Artemisia dubia on aldo-keto reductase family 1B10. J Korean Soc Appl Biol Chem. 2010;53:826-30. https://doi.org/10.3839/jksabc.2010.125
  11. Lee JI, Kim IH, Choi YH, Kim EY, Nam TJ. PTP1B inhibitory effect of alkyl p-coumarates from Calystegia soldanella. Nat Prod Commun. 2014;9:1585-8. https://doi.org/10.1177/1934578X1400901114
  12. Lee JI, Kim IH, Nam TJ. Crude extract and solvent fractions of Calystegia soldanella induce G1 and S phase arrest of the cell cycle in HepG2 cells. Int J Oncol. 2017;50:414-20. https://doi.org/10.3892/ijo.2017.3836
  13. Lee M, Kim S, Jung H. Distribution patterns of halophytes in the coastal area in Korea. Sea J Korean Soc Oceanogr. 2019;24:139-59.
  14. Ma T, Sun Y, Wang L, Wang J, Wu B, Yan T, et al. An investigation of the anti-depressive properties of phenylpropanoids and flavonoids in Hemerocallis citrina Baroni. Molecules. 2022;27:5809.
  15. Murai Y, Setoguchi H, Ono E, Iwashina T. Flavonoids and their qualitative variation in Calystegia soldanella and related species (Convolvulaceae). Nat Prod Commun. 2015;10:429-32. https://doi.org/10.1177/1934578X1501000313
  16. Nakamura H, Takada K. Reactive oxygen species in cancer: current findings and future directions. Cancer Sci. 2021;112:3945-52. https://doi.org/10.1111/cas.15068
  17. Oh GW, Ko SC, Lee JM, Yim MJ, Kim KW, Kim JY, et al. Tyrosinase inhibitory and antioxidant potential of eckmaxol isolated from the brown seaweed Ecklonia maxima. S Afr J Bot. 2023;157:648-55. https://doi.org/10.1016/j.sajb.2023.04.046
  18. Ono M, Takigawa A, Kanemaru Y, Kawakami G, Kabata K, Okawa M, et al. Calysolins V-IX, resin glycosides from Calystegia soldanella and their antiviral activity toward herpes. Chem Pharm Bull. 2014;62:97-105. https://doi.org/10.1248/cpb.c13-00610
  19. Pan RY, Ma J, Kong XX, Wang XF, Li SS, Qi XL, et al. Sodium rutin ameliorates Alzheimer's disease-like pathology by enhancing microglial amyloid-β clearance. Sci Adv. 2019;5:eaau6328.
  20. Patel MK, Pandey S, Tanna B, Alkan N, Mishra A. Comparative metabolomics unveils the role of metabolites and metabolic pathways in the adaptive mechanisms of shrubby halophytes. Environ Exp Bot. 2022;202:105030.
  21. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763.
  22. Qu J, Li Y, Zhong W, Gao P, Hu C. Recent developments in the role of reactive oxygen species in allergic asthma. J Thorac Dis. 2017;9:E32-43. https://doi.org/10.21037/jtd.2017.01.05
  23. Ravi S, Young T, Macinnis-Ng C, Nyugen TV, Duxbury M, Alfaro AC, et al. Untargeted metabolomics in halophytes: the role of different metabolites in New Zealand mangroves under multi-factorial abiotic stress conditions. Environ Exp Bot. 2020;173:103993.
  24. Sant'Ana LD, Ferreira ABB, Lorenzon MCA, Louro Berbara RL, Castro RN. Correlation of total phenolic and flavonoid contents of Brazilian honeys with colour and antioxidant capacity. Int J Food Prop. 2014;17:65-76. https://doi.org/10.1080/10942912.2011.614368
  25. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:453-62. https://doi.org/10.1016/j.cub.2014.03.034
  26. Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, et al. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. 2018;9:17181-98. https://doi.org/10.18632/oncotarget.24729
  27. Taniguchi A, Tsuge M, Miyahara N, Tsukahara H. Reactive oxygen species and antioxidative defense in chronic obstructive pulmonary disease. Antioxidants. 2021;10:1537.
  28. Tao C, Ahn DR, Xing MM, Lee EB, Kim DK. Phenolic components from the aerial parts of Bromus japonicus Thunb. Korean J Pharmacogn. 2012;43:213-6.
  29. Tori M, Ohara Y, Nakashima K, Sono M. Caffeic and coumaric acid esters from Calystegia soldanella. Fitoterapia. 2000;71:353-9. https://doi.org/10.1016/S0367-326X(99)00174-4
  30. Tryfidou DV, McClean C, Nikolaidis MG, Davison GW. DNA damage following acute aerobic exercise: a systematic review and meta-analysis. Sports Med. 2020;50:103-27. https://doi.org/10.1007/s40279-019-01181-y
  31. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9:119.
  32. Yang S, Lian G. ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem. 2020;467:1-12. https://doi.org/10.1007/s11010-019-03667-9