DOI QR코드

DOI QR Code

Vibrational and elastic stability responses of functionally graded carbon nanotube reinforced nanocomposite beams via a new Quasi-3D finite element model

  • Zakaria Belabed (Department of Technology, Institute of Science and Technology, Naama University Center) ;
  • Abdelmoumen Anis Bousahla (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2023.03.08
  • Accepted : 2024.03.27
  • Published : 2024.11.25

Abstract

A new finite element model is formulated and implemented in this analysis to assess the free vibration and elastic stability behaviors of functionally graded carbon nanotube-reinforced (FG-CNTRC) nanocomposite beams. The developed model is founded on an efficient Quasi-3D shear deformation beam theory. The traction-free boundary conditions are guaranteed with no shear correction factors by integrating the hyperbolic warping function for transverse shear deformation and stress through the thickness coordinate. The suggested two-node beam element has four degrees of freedom per node, and the discrete model maintains inter-element continuity by using both C1 and C0 continuities for the kinematics variables. As a result, the isoparametric coordinate system is used to produce the elementary stiffness, geometric, and mass matrices to improve the current formulation. The weak form of the variational principle is used to generate the governing equations. Following the distribution patterns and CNT volume fraction, the mechanical characteristics of used FG-CNTRC beams change gradually over the beam thickness. The high performance of the present beam element is demonstrated by comparing current results to those predicted by previous theories and solution procedures. In addition, detailed numerical research is conducted to investigate the effects of boundary conditions, distribution patterns, and slenderness ratio on the free vibration and buckling responses of FG-CNTRC beams. An appropriate reinforcement technique based on optimum distribution patterns can significantly improve computational efficiencies. The developed finite element beam model is computationally efficient and can be explored as a helpful design and optimization tool for CNT-reinforced nanocomposite structures.

Keywords

Acknowledgement

The Authors extend their appreciation to the Deanship Scientific Research at King Khalid University for funding this work through large group Research Project under grant number: RGP2/463/44.

References

  1. Abdollahi, I. and Yas, M.H. (2020), "Free vibration analysis of Timoshenko beams reinforced by BNNTs and a comparison with CNT-reinforced composite", SN Appl. Sci., 2, 645. https://doi.org/10.1007/s42452-020-2429-5.
  2. Abouelregal, A.E., Mohammed, W.W. and Sedighi, H.M. (2021), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Arch. Appl. Mech., 91(5), 2127-2142. https://doi.org/10.1007/s00419-020-01873-2.
  3. Abouelregal, A.E., Sedighi, H.M., Malikan, M. and Eremeyev, V.A. (2022), "Nonlocalized thermal behavior of rotating micromachined beams under dynamic and thermodynamic loads", ZAMM J. Appl. Math. Mech., 102(4), e202100310. https://doi.org/10.1002/zamm.202100310.
  4. Afshin, S. and Yas, M.H. (2020), "Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness", Appl. Math. Mech., 41, 785-804. https://doi.org/10.1007/s10483-020-2610-7.
  5. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. http://doi.org/10.12989/cac.2020.26.3.285.
  6. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015.
  7. Arefi, M., Pourjamshidian, M. and Ghorbanpour Arani, A. (2017), "Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nanobeam with FG-CNTRCs face-sheets in electro-thermal environment", Appl. Phys. A: Mater. Sci. Pr., 123, 1-18. https://doi.org/10.1007/s00339-017-0922-5.
  8. Asmael, M., Safaei, B., Zeeshan, Q., Zargar, O. and Nuhu, A.A. (2021), "Ultrasonic machining of carbon fiber-reinforced plastic composites: A review", Int. J. Adv. Manuf. Technol., 113, 3079-3120. https://doi.org/10.1007/S00170-021-06722-2.
  9. Babaei, H., Kiani, Y. and Eslami, M.R. (2021), "Vibrational behavior of thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic foundation: A two-step perturbation technique", Acta Mech., 232, 3897-3915. https://doi.org/10.1007/s00707-021-03027-z.
  10. Belabed, Z., Selim, M. M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307-321. https://doi.org/10.12989/scs.2021.40.2.307.
  11. Berber, S., Kwon, Y.K. and Tomanek, D. (2000), "Unusually high thermal conductivity of carbon nanotubes", Phys. Rev. Lett., 84, 4613-4616. https://doi.org/10.1103/PhysRevLett.84.4613.
  12. Bever, M.B. and Duwez, P.E. (1972), "Gradients in composite materials", Mater. Sci. Eng., 10, 1-8. https://doi.org/10.1016/0025-5416(72)90059-6.
  13. Borjalilou, V., Taati, E. and Ahmadian, M.T. (2019), "Bending, buckleng and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: Exact solutions", SN Appl. Sci., 1(11), 1-15. https://doi.org/10.1007/s42452-019-1359-6.
  14. Chauhan, A., Vates, U.K., Kanu, N.J., Gupta, E., Singh, G.K., Sharma, B.P. and Gorrepati, S.R. (2021), "Fabrication and characterization of novel nitinol particulate reinforced aluminium alloy metal matrix composites (NiTip/AA6061 MMCs)", Mater. Today: Proc., 38, 3027-3034. https://doi.org/10.1016/j.matpr.2020.09.326.
  15. Chavan, S., Kanu, N.J., Shendokar, S., Narkhede, B., Sinha, M.K., Gupta, E., ... and Vates, U.K. (2023), "An insight into nylon 6,6 nanofibers interleaved E-glass fiber reinforced epoxy composites", J. Inst. Eng. (India): C., 104(1), 15-44. https://doi.org/10.1007/s40032-022-00882-0.
  16. Civalek, O ., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Methods Appl. Sci., 1, 17. https://doi.org/10.1002/mma.7069.
  17. Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2019), "Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory", Thin Wall. Struct., 140, 304-317. https://doi.org/10.1016/j.tws.2019.03.031.
  18. Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2020), "Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory", Eng. Comput., 37, 2225-2244. https://doi.org/10.1007/s00366-020-00939-7.
  19. Dhatt, G., Lefrancois, E. and Touzot, G. (2012), Finite Element Method, ISTE Ltd, London, UK.
  20. Dong, C. (2022), "Multi-objective optimal design of carbon and glass reinforced hybrid composites under flexural loading", J. Appl. Comput. Mech., 8(4), 1324-1331. https://doi.org/10.22055/jacm.2022.39877.3479.
  21. Fattahi, A.M. and Safaei, B. (2017), "Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions", Microsyst. Technol., 23, 5079-5091. https://doi.org/10.1007/s00542-017-3345-5.
  22. Ghazwani, M.H., Alnujaie, A., Van Vinh, P. and Sedighi, H.M. (2024), "Effects of porosity and nonlocality on the low- and high-frequency vibration characteristics of Al/Si3N4 functionally graded nanoplates using quasi-3D theory", Arch. Civil Mech. Eng., 24, 49. https://doi.org/10.1007/s43452-023-00858-6.
  23. Gia Phi, B., Van Hieu, D., Sedighi, H.M. and Sofiyev, A.H. (2022), "Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments", Acta Mech., 233(6), 2249-2270. https://doi.org/10.1007/s00707-022-03224-4.
  24. Gonfa, B.K., Sinha, D., Vates, U.K., Badruddin, I.A., Hussien, M., Kamangar, S., ... and Hossain, N. (2022), "Investigation of mechanical and tribological behaviors of aluminum based hybrid metal matrix composite and multi-objective optimization", J. Mater., 15(16), 5607. https://doi.org/10.3390/ma15165607.
  25. Guo, Q., Yao, W., Li, W. and Gupta, N. (2021), "Constitutive models for the structural analysis of composite materials for the finite element analysis: A review of recent practices", Compos. Struct., 260, 113267. https://doi.org/10.1016/J.COMPSTRUCT.2020.113267.
  26. Hadji, L., Avcar, M. and Civalek, O . (2022), Free Vibration of Carbon Nanotube-Reinforced Composite Beams under the Various Boundary Conditions, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.
  27. Heshmati, M. and Yas, M.H. (2013), "Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach", J. Mech. Sci. Technol., 27, 3403-3408. https://doi.org/10.1007/s12206-013-0862-8.
  28. Ipek, C., Sofiyev, A., Fantuzzi, N. and Efendiyeva, S.P. (2023), "Buckling behavior of nanocomposite plates with functionally graded properties under compressive loads in elastic and thermal environments", J. Appl. Comput. Mech., 9(4), 974-986. https://doi.org/10.22055/jacm.2023.43091.4019.
  29. Jain, N. and Kanu, N.J. (2021), "The potential application of carbon nanotubes in water treatment: A state-of-the-art-review", Mater. Today: Proc., 43, 2998-3005. https://doi.org/10.1016/j.matpr.2021.01.331.
  30. Jain, N., Gupta, E. and Kanu, N.J. (2022), "Plethora of carbon nanotubes applications in various fields-A state-of-the-art-review", Smart Sci., 10(1), 1-24. https://doi.org/10.1080/23080477.2021.1940752.
  31. Kadam, S., Chavan, S. and Kanu, N.J. (2021), "An insight into advance self-healing composites", Mater. Res. Express., 8(5), 052001. https://doi.org/10.1088/2053-1591/abfba5.
  32. Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 17(6), 632-665. https://doi.org/10.1177/1099636215590280.
  33. Kanu, N.J. (2021d), "Modeling of stress wave propagation in matrix cracked laminates", AIP Adv., 11(8), 085217. https://doi.org/10.1063/5.0057749.
  34. Kanu, N.J. and Lal, A. (2022b), "Nonlinear static and dynamic performance of CNT reinforced and nanoclay modified laminated nanocomposite plate", AIP Adv., 12(2), 025102. https://doi.org/10.1063/5.0074987.
  35. Kanu, N.J. and Lal, A. (2022c), "Nonlinear static analysis of CNT/nanoclay particles reinforced polymer matrix composite plate using secant function based shear deformation theory", Smart Sci., 10(4), 301-312. https://doi.org/10.1080/23080477.2022.2066052.
  36. Kanu, N.J. and Lal, A. (2024), "Post buckling responses of carbon nanotubes' fiber reinforced and nanoclay modified polymer matrix hybrid composite plate under in-plane buckling load using the higher order shear deformation theory", Mech. Based Des. Struct. Mach., 52(2), 961-989. https://doi.org/10.1080/15397734.2022.2126985.
  37. Kanu, N.J., Bapat, S., Deodhar, H., Gupta, E., Singh, G.K., Vates, U.K., ... and Pandey, V. (2022a), "An insight into processing and properties of smart carbon nanotubes reinforced nanocomposites", Smart Sci., 10(1), 40-55. https://doi.org/10.1080/23080477.2021.1972913.
  38. Kanu, N.J., Gupta, E., Vates, U.K. and Singh, G.K. (2019a), "An insight into biomimetic 4D printing", RSC Adv., 9(65), 38209-38226. https://doi.org/10.1039/C9RA07342F.
  39. Kanu, N.J., Gupta, E., Vates, U.K. and Singh, G.K. (2019b), "Self-healing composites: A state-of-the-art review", Compos. A: Appl. Sci. Manuf., 121, 474-486. https://doi.org/10.1016/j.compositesa.2019.04.012.
  40. Kanu, N.J., Gupta, E., Vates, U.K. and Singh, G.K. (2021a), "An insight into smart self-lubricating composites", Smart Polymer Nanocomposites: Biomedical and Environmental Applications, Woodhead Publishing, Cambridge, UK.
  41. Kanu, N.J., Mangalam, A., Gupta, E., Vates, U.K., Singh, G.K. and Sinha, D.K. (2021c), "Investigation on secondary deformation of ultrafine SiC particles reinforced LM25 metal matrix composites", Mater. Today: Proc., 47, 3054-3058. https://doi.org/10.1016/j.matpr.2021.05.640.
  42. Kanu, N.J., Patwardhan, D., Gupta, E., Vates, U. K. and Singh, G.K. (2021b), "Finite element analysis of mechanical response of fracture fixation functionally graded bone plate at paediatric femur bone fracture site under compressive and torsional loadings", Mater. Today: Proc., 38, 2817-2823. https://doi.org/10.1016/j.matpr.2020.08.740.
  43. Kanu, N.J., Vates, U.K., Singh, G.K. and Chavan, S. (2019c), "Fracture problems, vibration, buckling, and bending analyses of functionally graded materials: A state-of-the-art review including smart FGMS", Particul. Sci. Technol., 37(5), 583-608. https://doi.org/10.1080/02726351.2017.1410265.
  44. Ke, L.L., Yang, J. and Kitipornchai, S. (2013), "Dynamic stability of functionally graded carbon nanotube-reinforced composite beams", Mech. Adv. Mater. Struct., 20, 28-37. https://doi.org/10.1080/15376494.2011.581412.
  45. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031.
  46. Khelifa, Z., Hadji, L., Daouadji, T.H. and Bourada, M. (2018), "Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. https://doi.org/10.12989/sem.2018.67.2.125.
  47. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  48. Kumar, P. and Srinivas, J. (2017), "Free vibration, bending and buckling of a FG-CNT reinforced composite beam: Comparative analysis with hybrid laminated composite beam", Multidisc. Model. Mater. Struct., 13, 590-611. https://doi.org/10.1108/MMMS-05-2017-0032.
  49. Lal, A. and Kanu, N.J. (2020), "The nonlinear deflection response of CNT/nanoclay reinforced polymer hybrid composite plate under different loading conditions", IOP Conf. Ser.: Mater. Sci. Eng., 814, 012033. https://doi.org/10.1088/1757-899X/814/1/012033.
  50. Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38(15-16), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008.
  51. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  52. Madenci, E. (2021a), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157.
  53. Madenci, E. (2021b), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
  54. Madenci, E. and Ozkili, Y.O. (2021c), "Free vibration analysis of open-cell FG porous beams: Analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  55. Malikan, M., Dastjerdi, S., Eremeyev, V.A. and Sedighi, H.M. (2023), "On a 3D material modelling of smart nanocomposite structures", Int. J. Eng. Sci., 193, 103966. https://doi.org/10.1016/j.ijengsci.2023.103966.
  56. Marandi, S.M. and Karimipour, I. (2023), "Free vibration analysis of a nanoscale FG-CNTRCs sandwich beam with flexible core: Implementing an extended high order approach", Eng. Struct., 276, 115320. https://doi.org/10.1016/j.engstruct.2022.115320.
  57. Mohammadimehr, M., Monajemi, A.A. and Afshari, H. (2020), "Free and forced vibration analysis of viscoelastic damped FGCNT reinforced micro composite beams", Microsyst. Technol., 26, 3085-3099. https://doi.org/10.1007/s00542-017-3682-4.
  58. Mohseni, A. and Shakouri, M. (2019), "Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation", Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl., 233, 2478-2489. https://doi.org/10.1177/1464420719866222.
  59. Mousavi, M.A., Sadeghi-Nik, A., Bahari, A., Jin, C., Ahmed, R., Ozbakkaloglu, T. and de Brito, J. (2021), "Strength optimization of cementitious composites reinforced by carbon nanotubes and titania nanoparticles", Constr. Build. Mater., 303(124), 510. https://doi.org/10.1016/j.conbuildmat.2021.124510.
  60. Nadeem, M., He, J.H., He, C.H., Sedighi, H.M. and Shirazi, A. (2022), "A numerical solution of nonlinear fractional newell-whitehead-segel equation using natural transform", TWMS J. Pure Appl. Math., 13(2), 168-182.
  61. Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load", Int. J. Appl. Mech., 8(1), 1650008. https://doi.org/10.1142/S1758825116500083.
  62. Pouresmaeeli, S. and Fazelzadeh, S.A. (2017), "Uncertain buckling and sensitivity analysis of functionally graded carbon nanotube-reinforced composite beam", Int. J. Appl. Mech., 9(5), 1750071. https://doi.org/10.1142/S1758825117500715.
  63. Randjbaran, E., Majid, D.L., Zahari, R., Sultan, M.T. and Mazlan, N. (2021), "Impacts of volume of carbon nanotubes on bending for carbon- kevlar hybrid fabrics", J. Appl. Comput. Mech., 7(2), 839-848. https://doi.org/10.22055/jacm.2020.35554.2682.
  64. Sedighi, H.M. and Daneshmand, F. (2014), "Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term", J. Appl. Comput. Mech., 1(1), 1-9. https://doi.org/10.22055/jacm.2014.10545.
  65. Sedighi, H.M., Malikan, M., Valipour, A. and Zur, K.K. (2020), "Nonlocal vibration of carbon/boron-nitride nano-hetero-structure in thermal and magnetic fields by means of nonlinear finite element method", J. Comput. Des. Eng., 7(5), 591-602. https://doi.org/10.1093/jcde/qwaa041.
  66. Shen, H. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004.
  67. Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002.
  68. Shenas, A.G., Ziaee, S. and Malekzadeh, P. (2018), "A unified higher-order beam theory for free vibration and buckling of fgcnt-reinforced microbeams embedded in elastic medium based on unifying stress-strain gradient framework", Iran. J. Sci. Technol. Trans. Mech. Eng., 43, 1-24. https://doi.org/10.1007/s40997-018-0171-z.
  69. Shi, Z., Yao, X., Pang, F. and Wang, Q. (2017), "An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions", Sci. Rep., 7, 1-18. https://doi.org/10.1038/s41598-017-12596-w.
  70. Tagrara, S.H., Benachour, A., Bouiadjra, M.B., Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
  71. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
  72. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
  73. Toutanji, H., Delatte, N., Aggoun, S., Duval, R. and Danson, A. (2004), "Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete", Cement Concrete Res., 34(2), 311-319. https://doi.org/10.1016/j.cemconres.2003.08.017.
  74. Treacy, M., Ebbesen, T. and Gibson, J. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0.
  75. Vates, U.K., Khattar, N., Kumar, R., Bhardwaj, A., Sharma, B.P., Kanu, N.J., ... and Subramanian, S. (2024), "Al 6063 hybrid metal matrix reinforced composites with tic nanoparticles and neem leaf ash using stir casting method for bicycle frame", Biennial International Conference on Future Learning Aspects of Mechanical Engineering, Noida, Uttar Pradesh, India, July-August.
  76. Vates, U.K., Mishra, S. and Kanu, N.J. (2021), "Biomimetic 4D printed materials: A state-of-the-art review on concepts, opportunities, and challenges", Mater. Today: Proc., 47, 3313-3319. https://doi.org/10.1016/j.matpr.2021.07.148.
  77. Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. (2019), "Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method", Front. Struct. Civil Eng., 13, 324-336. https://doi.org/10.1007/s11709-018-0466-6.
  78. Vo-Duy, T., Truong, T.T., Nguyen-Quang, K., Nguyen-Thoi, T. and Vu-Do, H.C. (2020), "A type of novel nonlinear distributions for improving significantly the stiffness of carbon nanotube-reinforced composite beams", Int. J. Comput. Methods, 17, 1950057. https://doi.org/10.1142/S0219876219500579.
  79. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2014), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
  80. Wang, Y., Zhang, Z., Chen, J. and Fu, T. (2022), "Low-velocity impact response of agglomerated FG-CNTRC beams with general boundary conditions using Gram-Schmidt-Ritz method", J. Braz. Soc. Mech. Sci. Eng., 44(11), 1-20. https://doi.org/10.1007/s40430-022-03843-x.
  81. Wattanasakulpong, N. and Mao, Q. (2016), "Stability and vibration analysis of carbon nanotube-reinforced composite beams with elastic boundary conditions: Chebyshev collocation method", Mech. Adv. Mater. Struct., 24, 260-270. https://doi.org/10.1080/15376494.2016.1142020.
  82. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
  83. Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118.
  84. Xu, J., Yang, Z., Yang, J. and Li, Y. (2021), "Free vibration analysis of rotating FG-CNT reinforced composite beams in thermal environments with general boundary conditions", Aerosp. Sci. Technol., 118, 107030. https://doi.org/10.1016/j.ast.2021.107030.
  85. Xu, S., Liu, J. and Li, Q. (2015), "Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste", Constr. Build. Mater., 76, 16-23. https://doi.org/10.1016/j.conbuildmat.2014.11.049.
  86. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  87. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  88. Zerrouki, R., Hamidi, A., Tlidji, Y., Karas, A., Zidour, M. and Tounsi, A. (2022), "Free vibration responses of nonlinear FG-CNT distribution in a polymer matrix", Smart Struct. Syst., 30(2), 135-143. https://doi.org/10.12989/sss.2022.30.2.135.
  89. Zhao, S., Zhao, Z., Yang, Z., Ke, L.L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct., 210, 110339. https://doi.org/10.1016/J.ENGSTRUCT.2020.110339.