DOI QR코드

DOI QR Code

New laminate constitutive equations for analysing the mechanical behavior of anisotropic plates and shells

  • Received : 2022.07.28
  • Accepted : 2024.03.25
  • Published : 2024.11.25

Abstract

Two novel laminate constitutive equations (LCE) for the static analysis of anisotropic shells are presented and implemented in this work. The LCE, developed for both two-dimensional (2D) and three-dimensional (3D) analysis, are more general than those obtained using the Kirchhoff-Love (K-L) equations, Reissner-Minddlin (R-M) type models, refined 2D/3D models, and some general anisotropic doubly-curved shell theories. Our study presents a 2D LCE model that accounts for classical mechanical couplings based on previous models plus additional couplings including extensional-twisting-shearing, extensional-twisting, Gauss bending-twisting-shearing, and Gauss bending-shearing mechanical couplings related to the third fundamental, or Gauss tensor. Moreover, the developed 3D LCE model accounts for all 2D mechanical couplings cited above plus additional mechanical couplings due to the section warping tensor, which arises from the stretching-through-the-thickness variable. These mechanical couplings are pertinent to the optimal design of a composite and are often disregarded in various static and dynamic analysis studies. Neglecting these new mechanical couplings in the design and analysis of laminated composite shells (LCS) can result in significant errors, from both physical and mechanical viewpoint. As such, we recommend employing new complete constitutive relations that integrate these pertinent mechanical couplings for the aforementioned study. Based on our analysis of the impact of additional couplings, we have developed several mathematical formulations that address several challenges encountered in laminated shell theory. As we increase the shell's thickness ratio, our research examines the effects of these couplings on mechanical behavior, buckling shape, critical buckling pressure, and failure analysis through computational modelling and various tests. The examination of the thickness ratio of composite shells illustrates the contrast between our newly developed LCE and some existing LCE as the shells increase in thickness.

Keywords

Acknowledgement

The authors would like to thank an anonymous referee for giving very helpful comments and suggestions that have greatly improved this paper.

References

  1. Almeida Jr, J.H.S., Bittrich, L., Jansen, E., Tita, V. and Spickenheuer, A. (2019), "A buckling optimization of composite cylinders for axial compression: A design methodology considering a variable-axial fiber layout", Compos. Struct., 222, 110928. https://doi.org/10.1016/j.compstruct.2019.110928. 
  2. Ambartsumyan, S. (1964), Theory of Anisotrpic Shells, National Aeronautics and Space Administration, Washington, D.C., USA. 
  3. Ambartsumyan, S. (1969), "A refined theory of anisotropic shells", FTD-MT-24-1699-71, Foreign Technology Division, Air Force Systems Command, U. S. Air Force, Wright Patterson AFB, OH, USA. 
  4. Ameri, A., Fekrar, A., Bourada, F., Selim, M.M., Benrahou, K.H., Tounsi, A. and Hussain, M. (2021), "Hygro-thermo-mechanical bending of laminated composite plate using an innovative computational four variable refined quasi-3D HSDT model", Steel Compos. Struct., 41(1), 31-44. https://doi.org/10.12989/scs.2021.41.1.031. 
  5. Asali, S., Summers, E. and Verijenko, V. (1993), "Optimization of laminated cylindrical pressure vessels under strength criterion", Compos. Struct., 25, 305-312. https://doi.org/10.1016/0263-8223(93)90177-R. 
  6. Bert, C.W. (1967), "Structural theory for laminated anisotropic elastic shells", J. Compos. Mater., 1, 414. https://doi.org/10.1177/002199836700100409. 
  7. Tang, C.W. (2019), "Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures" Comput. Concrete, 24(1), 63-71. https://doi.org/10.12989/cac.2019.24.1.063. 
  8. Cardozo, S., Gomes, H. and Awruch, A. (2011), "Optimization of laminated composite plates and shells using genetic algorithms, neural network and finite elements", Lat. Am. J. Solids Struct., 8, 413-422. https://doi.org/10.1590/S1679-78252011000400003. 
  9. Chan, W.S. (2000), "A simple closed-form solution of bending stiffness for laminated composite tubes", J. Reinf. Plast. Compos., 19(4), 278-291. https://doi.org/10.1177/073168440001900402. 
  10. Chan, W.S. and Demirhan, K. (2008), "A simple closed-form solution of bending stiffness for laminated composite tubes", J. Reinf. Plast. Compos., 19(4), 278-291. https://doi.org/10.1177/073168440001900402. 
  11. Deveci, H., Aydin, L. and Artem, H. (2016), "Buckling optimization of composite laminates using a hybrid algorithm under puck failure criterion constraint", J. Reinf. Plast. Compos., 35, 1233-1247. https://doi.org/10.1177/0731684416646860. 
  12. Dhar, S., Dayan, D. and Mallesam, D. (2013), "Multi-objective optimization of laminated composite plate using a non-dominated shorting genetic algorithm", Int. J. Eng. Sci. Technol., 5(4), 844-849. 
  13. Eliso, E., Tyler, R.K., Fernandez, C. and Justin, W. (2021), "Mechanical response of carbon nanotube reinforced particulate composites with implications for polymer bonded explosives", J. Compos. Mater., 55(19), 2559-2575. https://doi.org/10.1177/0021998321990863. 
  14. Ding, F., Liao, C., He, C., Gao, W., Wang, L., Lyu, F., ... and Yang, J. (2023), "Composite effects of circular concrete-filled steel tube columns under lateral load", Comput. Concrete, 31(2), 123-137. https://doi.org/10.12989/cac.2023.31.2.123. 
  15. Feumo, A.G., Nzengwa, R. and Nkongho, A.J. (2017), "Finite element model for linear elastic thick shells using gradient recovery method", Math. Probl. Eng., 2017(1), 14. https://doi.org/10.1155/2017/5903503. 
  16. Galambos, T. (2018), Guide to Stability Design Criteria for Metal Structures, John Wiley, New York, NY, USA. 
  17. Gning, PB. and Tarfoui, M. (2005), "Damage development in thick composite tubes under impact loading and influence on implosion pressure: Experimental observations", Compos. Part B, 36, 306-318. https://doi.org/10.1016/j.compositesb.2004.11.004. 
  18. Sabetifar, H., Nematzadeh, M. and Gholampour, A. (2022), "Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression", Comput. Concrete, 29(1), 15-29. https://doi.org/10.12989/cac.2022.29.1.015. 
  19. Kant, T. and Menon, M. (1989), "Higher-order theories for composite and sandwich cylindrical shells with C° finite element", Comput. Struct., 33(5), 1191-1204. https://doi.org/10.1016/0045-7949(89)90458-6. 
  20. Kaw, A.K. (2006), Mechanics of Composite Materials, 2nd Edition, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA. 
  21. Kassegne, S.K. and Chun, K.S. (2015), "Buckling characteristic of multi-laminated composite elliptical cylindrical shells", Int. J. Adv. Struct. Eng., 7, 1-10. https://doi.org/10.1007/s40091-014-0074-1. 
  22. Kraus, H. (1967), Thin Elastic Shells, John Wiley & Sons Inc., Hoboken, NJ, USA. 
  23. Krikanov, A. (2000), "Composite pressure vessels with higher stiffeness", Compos. Struct., 48, 119-127. https://doi.org/10.1016/S0263-8223(99)00083-5. 
  24. Lin, C. and Chan, W. (2003), "A simple analytical method for analyzing laminated composite elliptical tubes", Proceedings of 17th Technical Conference, American Society of Composites, West Lafayette, IN, USA, October. 
  25. Lu, X. and Liu, D. (1990), "An interlaminar shear stress continuity theory", Proceeding of the Fifth Technical Conference of the American Society for Composites, East Lansing, MI, USA, June. 
  26. Mohammad, H. and Naser, A.H. (2019), "Optimum design of carbon/epoxy composite pressure vessels including moisture effects", J. Compos. Sci., 3(65), 1-15. https://doi.org/10.3390/jcs3030065. 
  27. Farzam, M., Kian, N., Sadaghian, H. and Oshtolagh, M.R. (2023), "Behavior of recycled steel fiber-reinforced concrete beams in torsion-experimental and numerical approaches", Comput. Concrete, 32(2), 173-184. https://doi.org/10.12989/cac.2023.32.2.173. 
  28. Murthy, A. and Reddy, T. (1986), "A higher order theory for laminated composite cylindrical shells", J. Aeronaut. Soc., 38, 161-171. 
  29. Nkongho, J., Nzengwa, R., Amba, J.C. and Ngayihi, C. (2016), "Approximation of linear elastic shells by curved triangular finite elements based on elastic thick shells theory", Math. Probl. Eng., 2016(1), 8936075. https://doi.org/10.1155/2016/8936075. 
  30. Ngatcha, N.A.R. and Ngouanom, G.R.J. (2024), "A 2D exact model with stretching-through-the thickness variable kinematic for the 3D exact analysis of laminated composite structures", In preparation available in https://doi.org/hal-0322926v2. 
  31. Ngatcha, N.A.R., Ngouanom, G.R. and Pandong, A. (2022), "A two-dimensional model to analyze the static and dynamic mechanical behavior of multilayered shell structures", Compos. Struct., 295(4), 115754. https://doi.org/10.1016/j.compstruct.2022.115754. 
  32. Ngatcha, N.A.R., Ngouanom, G.R., Mbangue, E. and Pandong, A. (2021), "Two dimensional static mechanic analysis of laminated composite tube using ABCDE matriix with no correction factor", Int. J. Mech., 1(15), 107-120. https://doi.org/10.46300/9104.2021.15.12. 
  33. Ngeletshedzo, N. and Boy, R.M. (2018), "Considerations of failure analysis in a multi-layered composite structure under thermomechanical loading", Proc. 8 th Int. Conf. Exper. Mech., 2(8), 5329. https://doi.org/10.3390/ICEM18-05329. 
  34. Nzengwa, R. (2005), "A 2D model for dynamics of linear thick shell with transversal strains variation", Proceedings of Shell Structures Theory and Application 8th International Conference, Gdansk, Poland, October. 
  35. Nzengwa, R. and Tagne, S. (1999), "A two-dimensional model for linear elastic thick shells", Int. J. Solids Struct., 36, 5141-5176. https://doi.org/10.1016/S0020-7683(98)00165-6. 
  36. Ozan, A., Yasin, A. and Hamza, S. (2021), "Investigation of the properties of AI7075-HTC composites produced by powder metallurgy", J. Compos. Mater., 55(17), 2339-2348. https://doi.org/10.1177/0021998321990877. 
  37. Qatu, S. (1999), "Accurate theory for laminated compsite deep thick shells", Int. J. Solids Struct., 36, 2917-2941. https://doi.org/10.1016/S0020-7683(98)00134-6. 
  38. Rao, Y., Mohan, R. and Kiran, B. (2012), "Composite pressure vessels", Int. J. Res. Eng. Technol., 1(4), 597-618. 
  39. Sekine, H. and Fukunaga, H. (1993), "Optimum design of composite structures for shape, layer angle and layer thickness distributions", J. Compos. Mater., 27, 1479-1492. https://doi.org/10.1177/002199839302701504. 
  40. Song, L. and Xiao, L.J. (2013), "Thermo-mechanical properties of filament wound CFRP Vessel under hydraulic and atmospheric fatigue cycling", Compos. Part B., 46, 227-233. https://doi.org/10.1016/j.compositesb.2012.09.067. 
  41. Shrivastava, S., Mohite, P., Yadav, P. and Malagaudanavar, M. (2014), "Multi-objective multi-laminate design and optimization of a carbon fibre composite wing torsion box using evolutionary algorithm", Compos. Struct., 185, 132-147. https://doi.org/10.1016/j.compstruct.2017.10.041. 
  42. Tsai, S. and Pagano, N. (1968), Invariant Properties of Composite Materials, Technomic Publishing Company, Lancaster, UK.
  43. Tsai, S. and Wu, E. (1971), "A general theory of strength for anisotropic materials", J. Compos. Mater., 5, 58. https://doi.org/10.1177/002199837100500106. 
  44. Widera, E. and Chung, S.W. (1970), "A theory of nonhomogeneous ansitropy cylindrical shells", J. Appl. Mech., 21, 378-399. 
  45. Windenburg, D. and Trilling, C. (1934), "Collapse by instability of thin cylindrical shells under external pressure", Trans. Am. Soc. Mech. Eng., 56(8), 819-825. https://doi.org/10.1115/1.4019870.