Acknowledgement
The authors would like to thank an anonymous referee for giving very helpful comments and suggestions that have greatly improved this paper.
References
- Almeida Jr, J.H.S., Bittrich, L., Jansen, E., Tita, V. and Spickenheuer, A. (2019), "A buckling optimization of composite cylinders for axial compression: A design methodology considering a variable-axial fiber layout", Compos. Struct., 222, 110928. https://doi.org/10.1016/j.compstruct.2019.110928.
- Ambartsumyan, S. (1964), Theory of Anisotrpic Shells, National Aeronautics and Space Administration, Washington, D.C., USA.
- Ambartsumyan, S. (1969), "A refined theory of anisotropic shells", FTD-MT-24-1699-71, Foreign Technology Division, Air Force Systems Command, U. S. Air Force, Wright Patterson AFB, OH, USA.
- Ameri, A., Fekrar, A., Bourada, F., Selim, M.M., Benrahou, K.H., Tounsi, A. and Hussain, M. (2021), "Hygro-thermo-mechanical bending of laminated composite plate using an innovative computational four variable refined quasi-3D HSDT model", Steel Compos. Struct., 41(1), 31-44. https://doi.org/10.12989/scs.2021.41.1.031.
- Asali, S., Summers, E. and Verijenko, V. (1993), "Optimization of laminated cylindrical pressure vessels under strength criterion", Compos. Struct., 25, 305-312. https://doi.org/10.1016/0263-8223(93)90177-R.
- Bert, C.W. (1967), "Structural theory for laminated anisotropic elastic shells", J. Compos. Mater., 1, 414. https://doi.org/10.1177/002199836700100409.
- Tang, C.W. (2019), "Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures" Comput. Concrete, 24(1), 63-71. https://doi.org/10.12989/cac.2019.24.1.063.
- Cardozo, S., Gomes, H. and Awruch, A. (2011), "Optimization of laminated composite plates and shells using genetic algorithms, neural network and finite elements", Lat. Am. J. Solids Struct., 8, 413-422. https://doi.org/10.1590/S1679-78252011000400003.
- Chan, W.S. (2000), "A simple closed-form solution of bending stiffness for laminated composite tubes", J. Reinf. Plast. Compos., 19(4), 278-291. https://doi.org/10.1177/073168440001900402.
- Chan, W.S. and Demirhan, K. (2008), "A simple closed-form solution of bending stiffness for laminated composite tubes", J. Reinf. Plast. Compos., 19(4), 278-291. https://doi.org/10.1177/073168440001900402.
- Deveci, H., Aydin, L. and Artem, H. (2016), "Buckling optimization of composite laminates using a hybrid algorithm under puck failure criterion constraint", J. Reinf. Plast. Compos., 35, 1233-1247. https://doi.org/10.1177/0731684416646860.
- Dhar, S., Dayan, D. and Mallesam, D. (2013), "Multi-objective optimization of laminated composite plate using a non-dominated shorting genetic algorithm", Int. J. Eng. Sci. Technol., 5(4), 844-849.
- Eliso, E., Tyler, R.K., Fernandez, C. and Justin, W. (2021), "Mechanical response of carbon nanotube reinforced particulate composites with implications for polymer bonded explosives", J. Compos. Mater., 55(19), 2559-2575. https://doi.org/10.1177/0021998321990863.
- Ding, F., Liao, C., He, C., Gao, W., Wang, L., Lyu, F., ... and Yang, J. (2023), "Composite effects of circular concrete-filled steel tube columns under lateral load", Comput. Concrete, 31(2), 123-137. https://doi.org/10.12989/cac.2023.31.2.123.
- Feumo, A.G., Nzengwa, R. and Nkongho, A.J. (2017), "Finite element model for linear elastic thick shells using gradient recovery method", Math. Probl. Eng., 2017(1), 14. https://doi.org/10.1155/2017/5903503.
- Galambos, T. (2018), Guide to Stability Design Criteria for Metal Structures, John Wiley, New York, NY, USA.
- Gning, PB. and Tarfoui, M. (2005), "Damage development in thick composite tubes under impact loading and influence on implosion pressure: Experimental observations", Compos. Part B, 36, 306-318. https://doi.org/10.1016/j.compositesb.2004.11.004.
- Sabetifar, H., Nematzadeh, M. and Gholampour, A. (2022), "Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression", Comput. Concrete, 29(1), 15-29. https://doi.org/10.12989/cac.2022.29.1.015.
- Kant, T. and Menon, M. (1989), "Higher-order theories for composite and sandwich cylindrical shells with C° finite element", Comput. Struct., 33(5), 1191-1204. https://doi.org/10.1016/0045-7949(89)90458-6.
- Kaw, A.K. (2006), Mechanics of Composite Materials, 2nd Edition, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.
- Kassegne, S.K. and Chun, K.S. (2015), "Buckling characteristic of multi-laminated composite elliptical cylindrical shells", Int. J. Adv. Struct. Eng., 7, 1-10. https://doi.org/10.1007/s40091-014-0074-1.
- Kraus, H. (1967), Thin Elastic Shells, John Wiley & Sons Inc., Hoboken, NJ, USA.
- Krikanov, A. (2000), "Composite pressure vessels with higher stiffeness", Compos. Struct., 48, 119-127. https://doi.org/10.1016/S0263-8223(99)00083-5.
- Lin, C. and Chan, W. (2003), "A simple analytical method for analyzing laminated composite elliptical tubes", Proceedings of 17th Technical Conference, American Society of Composites, West Lafayette, IN, USA, October.
- Lu, X. and Liu, D. (1990), "An interlaminar shear stress continuity theory", Proceeding of the Fifth Technical Conference of the American Society for Composites, East Lansing, MI, USA, June.
- Mohammad, H. and Naser, A.H. (2019), "Optimum design of carbon/epoxy composite pressure vessels including moisture effects", J. Compos. Sci., 3(65), 1-15. https://doi.org/10.3390/jcs3030065.
- Farzam, M., Kian, N., Sadaghian, H. and Oshtolagh, M.R. (2023), "Behavior of recycled steel fiber-reinforced concrete beams in torsion-experimental and numerical approaches", Comput. Concrete, 32(2), 173-184. https://doi.org/10.12989/cac.2023.32.2.173.
- Murthy, A. and Reddy, T. (1986), "A higher order theory for laminated composite cylindrical shells", J. Aeronaut. Soc., 38, 161-171.
- Nkongho, J., Nzengwa, R., Amba, J.C. and Ngayihi, C. (2016), "Approximation of linear elastic shells by curved triangular finite elements based on elastic thick shells theory", Math. Probl. Eng., 2016(1), 8936075. https://doi.org/10.1155/2016/8936075.
- Ngatcha, N.A.R. and Ngouanom, G.R.J. (2024), "A 2D exact model with stretching-through-the thickness variable kinematic for the 3D exact analysis of laminated composite structures", In preparation available in https://doi.org/hal-0322926v2.
- Ngatcha, N.A.R., Ngouanom, G.R. and Pandong, A. (2022), "A two-dimensional model to analyze the static and dynamic mechanical behavior of multilayered shell structures", Compos. Struct., 295(4), 115754. https://doi.org/10.1016/j.compstruct.2022.115754.
- Ngatcha, N.A.R., Ngouanom, G.R., Mbangue, E. and Pandong, A. (2021), "Two dimensional static mechanic analysis of laminated composite tube using ABCDE matriix with no correction factor", Int. J. Mech., 1(15), 107-120. https://doi.org/10.46300/9104.2021.15.12.
- Ngeletshedzo, N. and Boy, R.M. (2018), "Considerations of failure analysis in a multi-layered composite structure under thermomechanical loading", Proc. 8 th Int. Conf. Exper. Mech., 2(8), 5329. https://doi.org/10.3390/ICEM18-05329.
- Nzengwa, R. (2005), "A 2D model for dynamics of linear thick shell with transversal strains variation", Proceedings of Shell Structures Theory and Application 8th International Conference, Gdansk, Poland, October.
- Nzengwa, R. and Tagne, S. (1999), "A two-dimensional model for linear elastic thick shells", Int. J. Solids Struct., 36, 5141-5176. https://doi.org/10.1016/S0020-7683(98)00165-6.
- Ozan, A., Yasin, A. and Hamza, S. (2021), "Investigation of the properties of AI7075-HTC composites produced by powder metallurgy", J. Compos. Mater., 55(17), 2339-2348. https://doi.org/10.1177/0021998321990877.
- Qatu, S. (1999), "Accurate theory for laminated compsite deep thick shells", Int. J. Solids Struct., 36, 2917-2941. https://doi.org/10.1016/S0020-7683(98)00134-6.
- Rao, Y., Mohan, R. and Kiran, B. (2012), "Composite pressure vessels", Int. J. Res. Eng. Technol., 1(4), 597-618.
- Sekine, H. and Fukunaga, H. (1993), "Optimum design of composite structures for shape, layer angle and layer thickness distributions", J. Compos. Mater., 27, 1479-1492. https://doi.org/10.1177/002199839302701504.
- Song, L. and Xiao, L.J. (2013), "Thermo-mechanical properties of filament wound CFRP Vessel under hydraulic and atmospheric fatigue cycling", Compos. Part B., 46, 227-233. https://doi.org/10.1016/j.compositesb.2012.09.067.
- Shrivastava, S., Mohite, P., Yadav, P. and Malagaudanavar, M. (2014), "Multi-objective multi-laminate design and optimization of a carbon fibre composite wing torsion box using evolutionary algorithm", Compos. Struct., 185, 132-147. https://doi.org/10.1016/j.compstruct.2017.10.041.
- Tsai, S. and Pagano, N. (1968), Invariant Properties of Composite Materials, Technomic Publishing Company, Lancaster, UK.
- Tsai, S. and Wu, E. (1971), "A general theory of strength for anisotropic materials", J. Compos. Mater., 5, 58. https://doi.org/10.1177/002199837100500106.
- Widera, E. and Chung, S.W. (1970), "A theory of nonhomogeneous ansitropy cylindrical shells", J. Appl. Mech., 21, 378-399.
- Windenburg, D. and Trilling, C. (1934), "Collapse by instability of thin cylindrical shells under external pressure", Trans. Am. Soc. Mech. Eng., 56(8), 819-825. https://doi.org/10.1115/1.4019870.